Continuum robots with variable stiffness have gained wide popularity in the last decade. Layer jamming (LJ) has emerged as a simple and efficient technique to achieve tunable stiffness for continuum robots. Despite its merits, the development of a control-oriented dynamical model tailored for this specific class of robots remains an open problem in the literature. This paper aims to present the first solution, to the best of our knowledge, to close the gap. We propose an energy-based model that is integrated with the LuGre frictional model for LJ-based continuum robots. Then, we take a comprehensive theoretical analysis for this model, focusing on two fundamental characteristics of LJ-based continuum robots: shape locking and adjustable stiffness. To validate the modeling approach and theoretical results, a series of experiments using our \textit{OctRobot-I} continuum robotic platform was conducted. The results show that the proposed model is capable of interpreting and predicting the dynamical behaviors in LJ-based continuum robots.
In the Fourth Industrial Revolution, wherein artificial intelligence and the automation of machines occupy a central role, the deployment of robots is indispensable. However, the manufacturing process using robots, especially in collaboration with humans, is highly intricate. In particular, modeling the friction torque in robotic joints is a longstanding problem due to the lack of a good mathematical description. This motivates the usage of data-driven methods in recent works. However, model-based and data-driven models often exhibit limitations in their ability to generalize beyond the specific dynamics they were trained on, as we demonstrate in this paper. To address this challenge, we introduce a novel approach based on residual learning, which aims to adapt an existing friction model to new dynamics using as little data as possible. We validate our approach by training a base neural network on a symmetric friction data set to learn an accurate relation between the velocity and the friction torque. Subsequently, to adapt to more complex asymmetric settings, we train a second network on a small dataset, focusing on predicting the residual of the initial network's output. By combining the output of both networks in a suitable manner, our proposed estimator outperforms the conventional model-based approach and the base neural network significantly. Furthermore, we evaluate our method on trajectories involving external loads and still observe a substantial improvement, approximately 60-70\%, over the conventional approach. Our method does not rely on data with external load during training, eliminating the need for external torque sensors. This demonstrates the generalization capability of our approach, even with a small amount of data-only 43 seconds of a robot movement-enabling adaptation to diverse scenarios based on prior knowledge about friction in different settings.
We propose an augmented Lagrangian-based preconditioner to accelerate the convergence of Krylov subspace methods applied to linear systems of equations with a block three-by-three structure such as those arising from mixed finite element discretizations of the coupled Stokes-Darcy flow problem. We analyze the spectrum of the preconditioned matrix and we show how the new preconditioner can be efficiently applied. Numerical experiments are reported to illustrate the effectiveness of the preconditioner in conjunction with flexible GMRES for solving linear systems of equations arising from a 3D test problem.
We introduce a nonlinear stochastic model reduction technique for high-dimensional stochastic dynamical systems that have a low-dimensional invariant effective manifold with slow dynamics, and high-dimensional, large fast modes. Given only access to a black box simulator from which short bursts of simulation can be obtained, we design an algorithm that outputs an estimate of the invariant manifold, a process of the effective stochastic dynamics on it, which has averaged out the fast modes, and a simulator thereof. This simulator is efficient in that it exploits of the low dimension of the invariant manifold, and takes time steps of size dependent on the regularity of the effective process, and therefore typically much larger than that of the original simulator, which had to resolve the fast modes. The algorithm and the estimation can be performed on-the-fly, leading to efficient exploration of the effective state space, without losing consistency with the underlying dynamics. This construction enables fast and efficient simulation of paths of the effective dynamics, together with estimation of crucial features and observables of such dynamics, including the stationary distribution, identification of metastable states, and residence times and transition rates between them.
We study the multiplicative hazards model with intermittently observed longitudinal covariates and time-varying coefficients. For such models, the existing {\it ad hoc} approach, such as the last value carried forward, is biased. We propose a kernel weighting approach to get an unbiased estimation of the non-parametric coefficient function and establish asymptotic normality for any fixed time point. Furthermore, we construct the simultaneous confidence band to examine the overall magnitude of the variation. Simulation studies support our theoretical predictions and show favorable performance of the proposed method. A data set from cerebral infarction is used to illustrate our methodology.
Quantum computing promises transformational gains for solving some problems, but little to none for others. For anyone hoping to use quantum computers now or in the future, it is important to know which problems will benefit. In this paper, we introduce a framework for answering this question both intuitively and quantitatively. The underlying structure of the framework is a race between quantum and classical computers, where their relative strengths determine when each wins. While classical computers operate faster, quantum computers can sometimes run more efficient algorithms. Whether the speed advantage or the algorithmic advantage dominates determines whether a problem will benefit from quantum computing or not. Our analysis reveals that many problems, particularly those of small to moderate size that can be important for typical businesses, will not benefit from quantum computing. Conversely, larger problems or those with particularly big algorithmic gains will benefit from near-term quantum computing. Since very large algorithmic gains are rare in practice and theorized to be rare even in principle, our analysis suggests that the benefits from quantum computing will flow either to users of these rare cases, or practitioners processing very large data.
We characterize the Schr\"odinger bridge problems by a family of Mckean-Vlasov stochastic control problems with no terminal time distribution constraint. In doing so, we use the theory of Hilbert space embeddings of probability measures and then describe the constraint as penalty terms defined by the maximum mean discrepancy in the control problems. A sequence of the probability laws of the state processes resulting from $\epsilon$-optimal controls converges to a unique solution of the Schr\"odinger's problem under mild conditions on given initial and terminal time distributions and an underlying diffusion process. We propose a neural SDE based deep learning algorithm for the Mckean-Vlasov stochastic control problems. Several numerical experiments validate our methods.
Bagging is an essential skill that humans perform in their daily activities. However, deformable objects, such as bags, are complex for robots to manipulate. This paper presents an efficient learning-based framework that enables robots to learn bagging. The novelty of this framework is its ability to perform bagging without relying on simulations. The learning process is accomplished through a reinforcement learning algorithm introduced in this work, designed to find the best grasping points of the bag based on a set of compact state representations. The framework utilizes a set of primitive actions and represents the task in five states. In our experiments, the framework reaches a 60 % and 80 % of success rate after around three hours of training in the real world when starting the bagging task from folded and unfolded, respectively. Finally, we test the trained model with two more bags of different sizes to evaluate its generalizability.
Reservoir Computing (RC) is a type of recursive neural network (RNN), and there can be no doubt that the RC will be more and more widely used for building future prediction models for time-series data, with low training cost, high speed and high computational power. However, research into the mathematical structure of RC neural networks has only recently begun. Bollt (2021) clarified the necessity of the autoregressive (AR) model for gaining the insight into the mathematical structure of RC neural networks, and indicated that the Wold decomposition theorem is the milestone for understanding of these. Keeping this celebrated result in mind, in this paper, we clarify hidden structures of input and recurrent weight matrices in RC neural networks, and show that such structures attain perfect prediction for the AR type of time series data.
Measurement-based quantum computation (MBQC) offers a fundamentally unique paradigm to design quantum algorithms. Indeed, due to the inherent randomness of quantum measurements, the natural operations in MBQC are not deterministic and unitary, but are rather augmented with probabilistic byproducts. Yet, the main algorithmic use of MBQC so far has been to completely counteract this probabilistic nature in order to simulate unitary computations expressed in the circuit model. In this work, we propose designing MBQC algorithms that embrace this inherent randomness and treat the random byproducts in MBQC as a resource for computation. As a natural application where randomness can be beneficial, we consider generative modeling, a task in machine learning centered around generating complex probability distributions. To address this task, we propose a variational MBQC algorithm equipped with control parameters that allow to directly adjust the degree of randomness to be admitted in the computation. Our numerical findings indicate that this additional randomness can lead to significant gains in learning performance in certain generative modeling tasks. These results highlight the potential advantages in exploiting the inherent randomness of MBQC and motivate further research into MBQC-based algorithms.
We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to the other robots. In this paper, we propose a method to learn correspondences between robots that have significant differences in their morphologies: a fixed-based manipulator robot with joint control and a differential drive mobile robot. For this, both robots are first given demonstrations that achieve the same tasks. A common latent representation is formed while learning the corresponding policies. After this initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robot to achieve the same task. We verified our system in a set of experiments where the correspondence between two simulated robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots considered. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.