亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In order to build reliable and trustworthy NLP applications, models need to be both fair across different demographics and explainable. Usually these two objectives, fairness and explainability, are optimized and/or examined independently of each other. Instead, we argue that forthcoming, trustworthy NLP systems should consider both. In this work, we perform a first study to understand how they influence each other: do fair(er) models rely on more plausible rationales? and vice versa. To this end, we conduct experiments on two English multi-class text classification datasets, BIOS and ECtHR, that provide information on gender and nationality, respectively, as well as human-annotated rationales. We fine-tune pre-trained language models with several methods for (i) bias mitigation, which aims to improve fairness; (ii) rationale extraction, which aims to produce plausible explanations. We find that bias mitigation algorithms do not always lead to fairer models. Moreover, we discover that empirical fairness and explainability are orthogonal.

相關內容

This study explores the robustness of label noise classifiers, aiming to enhance model resilience against noisy data in complex real-world scenarios. Label noise in supervised learning, characterized by erroneous or imprecise labels, significantly impairs model performance. This research focuses on the increasingly pertinent issue of label noise's impact on practical applications. Addressing the prevalent challenge of inaccurate training data labels, we integrate adversarial machine learning (AML) and importance reweighting techniques. Our approach involves employing convolutional neural networks (CNN) as the foundational model, with an emphasis on parameter adjustment for individual training samples. This strategy is designed to heighten the model's focus on samples critically influencing performance.

Video highlights detection (VHD) is an active research field in computer vision, aiming to locate the most user-appealing clips given raw video inputs. However, most VHD methods are based on the closed world assumption, i.e., a fixed number of highlight categories is defined in advance and all training data are available beforehand. Consequently, existing methods have poor scalability with respect to increasing highlight domains and training data. To address above issues, we propose a novel video highlights detection method named Global Prototype Encoding (GPE) to learn incrementally for adapting to new domains via parameterized prototypes. To facilitate this new research direction, we collect a finely annotated dataset termed LiveFood, including over 5,100 live gourmet videos that consist of four domains: ingredients, cooking, presentation, and eating. To the best of our knowledge, this is the first work to explore video highlights detection in the incremental learning setting, opening up new land to apply VHD for practical scenarios where both the concerned highlight domains and training data increase over time. We demonstrate the effectiveness of GPE through extensive experiments. Notably, GPE surpasses popular domain incremental learning methods on LiveFood, achieving significant mAP improvements on all domains. Concerning the classic datasets, GPE also yields comparable performance as previous arts. The code is available at: //github.com/ForeverPs/IncrementalVHD_GPE.

Text-to-image generative models offer many innovative services but also raise ethical concerns due to their potential to generate unethical images. Most publicly available text-to-image models employ safety filters to prevent unintended generation intents. In this work, we introduce the Divide-and-Conquer Attack to circumvent the safety filters of state-of-the-art text-to-image models. Our attack leverages LLMs as agents for text transformation, creating adversarial prompts from sensitive ones. We have developed effective helper prompts that enable LLMs to break down sensitive drawing prompts into multiple harmless descriptions, allowing them to bypass safety filters while still generating sensitive images. This means that the latent harmful meaning only becomes apparent when all individual elements are drawn together. Our evaluation demonstrates that our attack successfully circumvents the closed-box safety filter of SOTA DALLE-3 integrated natively into ChatGPT to generate unethical images. This approach, which essentially uses LLM-generated adversarial prompts against GPT-4-assisted DALLE-3, is akin to using one's own spear to breach their shield. It could have more severe security implications than previous manual crafting or iterative model querying methods, and we hope it stimulates more attention towards similar efforts. Our code and data are available at: //github.com/researchcode001/Divide-and-Conquer-Attack

We present a computational modelling approach which targets at capturing the specifics on how to virtually augment a Metaverse user's available social time capacity via using an independent and autonomous version of her digital representation in the Metaverse. We envision a Metaverse-focused extension of the traditional avatar concept: An avatar can be as well programmed to operate independently when its user is not controlling it directly, thus turning it into an agent-based digital human representation. This way, the user can virtually delegate on the avatar socializing time required for maintaining the existing contacts, so as to eventually maintain spare non-avatar-mediated socializing time which can be potentially invested in additional socialization activities. We model the setting and identify the characteristic variables via using selected concepts from social sciences: ego networks, social presence, and social cues. Then, we formulate the problem of maximizing the user's non-avatar-mediated spare time as a linear optimization. Finally, we analyze the feasible region of the problem and we present some initial insights on the spare time that can be achieved for different parameter values of the avatar-mediated interactions.

In this work, we formulate a novel framework for adversarial robustness using the manifold hypothesis. This framework provides sufficient conditions for defending against adversarial examples. We develop an adversarial purification method with this framework. Our method combines manifold learning with variational inference to provide adversarial robustness without the need for expensive adversarial training. Experimentally, our approach can provide adversarial robustness even if attackers are aware of the existence of the defense. In addition, our method can also serve as a test-time defense mechanism for variational autoencoders.

While there is significant interest in using generative AI tools as general-purpose models for specific ML applications, discriminative models are much more widely deployed currently. One of the key shortcomings of these discriminative AI tools that have been already deployed is that they are not adaptable and user-friendly compared to generative AI tools (e.g., GPT4, Stable Diffusion, Bard, etc.), where a non-expert user can iteratively refine model inputs and give real-time feedback that can be accounted for immediately, allowing users to build trust from the start. Inspired by this emerging collaborative workflow, we develop a new system architecture that enables users to work with discriminative models (such as for object detection, sentiment classification, etc.) in a fashion similar to generative AI tools, where they can easily provide immediate feedback as well as adapt the deployed models as desired. Our approach has implications on improving trust, user-friendliness, and adaptability of these versatile but traditional prediction models.

Recently, computers have diversified architectures. To achieve high numerical calculation software performance, it is necessary to tune the software according to the target computer architecture. However, code optimization for each environment is difficult unless it is performed by a specialist who knows computer architectures well. By applying autotuning (AT), the tuning effort can be reduced. Optimized implementation by AT that enhances computer performance can be used even by non-experts. In this research, we propose a technique for AT for programs using open multi-processing (OpenMP). We propose an AT method using an AT language that changes the OpenMP optimized loop and dynamically changes the number of threads in OpenMP according to computational kernels. Performance evaluation was performed using the Fujitsu PRIMEHPC FX100, which is a K-computer type supercomputer installed at the Information Technology Center, Nagoya University. As a result, we found there was a performance increase of 1.801 times that of the original code in a plasma turbulence analysis.

In modern-day organizations, many software applications require critical input to decide the next steps in the application workflow and approval. One of the most important inputs to decide the subsequent course of action is the key performance indicator-based scoring for the entities used in the application. Computing the right score for the entities in the application is a critical step that will drive the subsequent processing and help to decide the next course of action for the entity accurately. Computing the right score is a critical parameter for application processing; deriving the precise and correct score is crucial and pivotal for the application's intended objective; this mandates a very efficient and optimized scoring application in place and is of paramount importance for the success of such applications. We will discuss in this article how to envision and design a generic, extensible scoring engine and a few use cases for scoring with the associated intricacies and complexities to implement the scoring framework.

Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter - we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for semantic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for "detect_sarcasm(string)" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they not only write code, but also selectively "emulate" the interpreter by generating the expected output of "detect_sarcasm(string)" and other lines of code that cannot be executed. In this work, we propose Chain of Code (CoC), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format semantic sub-tasks in a program as flexible pseudocode that the interpreter can explicitly catch undefined behaviors and hand off to simulate with an LM (as an "LMulator"). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other baselines across a variety of benchmarks; on BIG-Bench Hard, Chain of Code achieves 84%, a gain of 12% over Chain of Thought. CoC scales well with large and small models alike, and broadens the scope of reasoning questions that LMs can correctly answer by "thinking in code". Project webpage: //chain-of-code.github.io.

This paper presents a Gaussian Process (GP) framework, a non-parametric technique widely acknowledged for regression and classification tasks, to address inverse problems in mean field games (MFGs). By leveraging GPs, we aim to recover agents' strategic actions and the environment's configurations from partial and noisy observations of the population of agents and the setup of the environment. Our method is a probabilistic tool to infer the behaviors of agents in MFGs from data in scenarios where the comprehensive dataset is either inaccessible or contaminated by noises.

北京阿比特科技有限公司