Pseudo-Hamiltonian neural networks (PHNN) were recently introduced for learning dynamical systems that can be modelled by ordinary differential equations. In this paper, we extend the method to partial differential equations. The resulting model is comprised of up to three neural networks, modelling terms representing conservation, dissipation and external forces, and discrete convolution operators that can either be learned or be given as input. We demonstrate numerically the superior performance of PHNN compared to a baseline model that models the full dynamics by a single neural network. Moreover, since the PHNN model consists of three parts with different physical interpretations, these can be studied separately to gain insight into the system, and the learned model is applicable also if external forces are removed or changed.
Neural networks have revolutionized the field of machine learning with increased predictive capability. In addition to improving the predictions of neural networks, there is a simultaneous demand for reliable uncertainty quantification on estimates made by machine learning methods such as neural networks. Bayesian neural networks (BNNs) are an important type of neural network with built-in capability for quantifying uncertainty. This paper discusses aleatoric and epistemic uncertainty in BNNs and how they can be calculated. With an example dataset of images where the goal is to identify the amplitude of an event in the image, it is shown that epistemic uncertainty tends to be lower in images which are well-represented in the training dataset and tends to be high in images which are not well-represented. An algorithm for out-of-distribution (OoD) detection with BNN epistemic uncertainty is introduced along with various experiments demonstrating factors influencing the OoD detection capability in a BNN. The OoD detection capability with epistemic uncertainty is shown to be comparable to the OoD detection in the discriminator network of a generative adversarial network (GAN) with comparable network architecture.
The discovery of equations with knowledge of the process origin is a tempting prospect. However, most equation discovery tools rely on gradient methods, which offer limited control over parameters. An alternative approach is the evolutionary equation discovery, which allows modification of almost every optimization stage. In this paper, we examine the modifications that can be introduced into the evolutionary operators of the equation discovery algorithm, taking inspiration from directed evolution techniques employed in fields such as chemistry and biology. The resulting approach, dubbed directed equation discovery, demonstrates a greater ability to converge towards accurate solutions than the conventional method. To support our findings, we present experiments based on Burgers', wave, and Korteweg--de Vries equations.
Differential equation discovery, a machine learning subfield, is used to develop interpretable models, particularly in nature-related applications. By expertly incorporating the general parametric form of the equation of motion and appropriate differential terms, algorithms can autonomously uncover equations from data. This paper explores the prerequisites and tools for independent equation discovery without expert input, eliminating the need for equation form assumptions. We focus on addressing the challenge of assessing the adequacy of discovered equations when the correct equation is unknown, with the aim of providing insights for reliable equation discovery without prior knowledge of the equation form.
Compared to widely used likelihood-based approaches, the minimum contrast (MC) method is a computationally efficient method for estimation and inference of parametric stationary point processes. This advantage becomes more pronounced when analyzing complex point process models, such as multivariate log-Gaussian Cox processes (LGCP). Despite its practical advantages, there is very little work on the MC method for multivariate point processes. The aim of this article is to introduce a new MC method for parametric multivariate stationary spatial point processes. A contrast function is calculated based on the trace of the power of the difference between the conjectured $K$-function matrix and its nonparametric unbiased edge-corrected estimator. Under standard assumptions, the asymptotic normality of the MC estimator of the model parameters is derived. The performance of the proposed method is illustrated with bivariate LGCP simulations and a real data analysis of a bivariate point pattern of the 2014 terrorist attacks in Nigeria.
We revisit the relation between the gradient-flow equations and Hamilton's equations in information geometry. By regarding the gradient-flow equations as Huygens' equations in geometric optics, we have related the gradient flows to the geodesic flows induced by the geodesic Hamiltonian in an appropriate Riemannian geometry. The original evolution parameter $\textit{t}$ in the gradient-flow equations is related to the arc-length parameter in the associated Riemannian manifold by Jacobi-Maupertuis transformation. As a by-product, it is found the relation between the gradient-flow equation and replicator equations.
Hardware implementations of Spiking Neural Networks (SNNs) represent a promising approach to edge-computing for applications that require low-power and low-latency, and which cannot resort to external cloud-based computing services. However, most solutions proposed so far either support only relatively small networks, or take up significant hardware resources, to implement large networks. To realize large-scale and scalable SNNs it is necessary to develop an efficient asynchronous communication and routing fabric that enables the design of multi-core architectures. In particular the core interface that manages inter-core spike communication is a crucial component as it represents the bottleneck of Power-Performance-Area (PPA) especially for the arbitration architecture and the routing memory. In this paper we present an arbitration mechanism with the corresponding asynchronous encoding pipeline circuits, based on hierarchical arbiter trees. The proposed scheme reduces the latency by more than 70% in sparse-event mode, compared to the state-of-the-art arbitration architectures, with lower area cost. The routing memory makes use of asynchronous Content Addressable Memory (CAM) with Current Sensing Completion Detection (CSCD), which saves approximately 46% energy, and achieves a 40% increase in throughput against conventional asynchronous CAM using configurable delay lines, at the cost of only a slight increase in area. In addition as it radically reduces the core interface resources in multi-core neuromorphic processors, the arbitration architecture and CAM architecture we propose can be also applied to a wide range of general asynchronous circuits and systems.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.