We consider Biot model with block preconditioners and generalized eigenvalue problems for scalability and robustness to parameters. A discontinuous Galerkin discretization is employed with the displacement and Darcy flow flux discretized as piecewise continuous in $P_1$ elements, and the pore pressure as piecewise constant in the $P_0$ element with a stabilizing term. Parallel algorithms are designed to solve the resulting linear system. Specifically, the GMRES method is employed as the outer iteration algorithm and block-triangular preconditioners are designed to accelerate the convergence. In the preconditioners, the elliptic operators are further approximated by using incomplete Cholesky factorization or two-level additive overlapping Schwartz method where coarse grids are constructed by generalized eigenvalue problems in the overlaps (GenEO). Extensive numerical experiments show a scalability and parametric robustness of the resulting parallel algorithms.
This paper addresses the problem of providing robust estimators under a functional logistic regression model. Logistic regression is a popular tool in classification problems with two populations. As in functional linear regression, regularization tools are needed to compute estimators for the functional slope. The traditional methods are based on dimension reduction or penalization combined with maximum likelihood or quasi--likelihood techniques and for that reason, they may be affected by misclassified points especially if they are associated to functional covariates with atypical behaviour. The proposal given in this paper adapts some of the best practices used when the covariates are finite--dimensional to provide reliable estimations. Under regularity conditions, consistency of the resulting estimators and rates of convergence for the predictions are derived. A numerical study illustrates the finite sample performance of the proposed method and reveals its stability under different contamination scenarios. A real data example is also presented.
The identification of primal variables and adjoint variables is usually done via indices in operator overloading algorithmic differentiation tools. One approach is a linear management scheme, which is easy to implement and supports memory optimization for copy statements. An alternative approach performs a reuse of indices, which requires more implementation effort but results in much smaller adjoint vectors. Therefore, the vector mode of algorithmic differentiation scales better with the reuse management scheme. In this paper, we present a novel approach that reuses the indices and allows the copy optimization, thus combining the advantages of the two aforementioned schemes. The new approach is compared to the known approaches on a simple synthetic test case and a real-world example using the computational fluid dynamics solver SU2.
Making inference with spatial extremal dependence models can be computationally burdensome since they involve intractable and/or censored likelihoods. Building on recent advances in likelihood-free inference with neural Bayes estimators, that is, neural networks that approximate Bayes estimators, we develop highly efficient estimators for censored peaks-over-threshold models that encode censoring information in the neural network architecture. Our new method provides a paradigm shift that challenges traditional censored likelihood-based inference methods for spatial extremal dependence models. Our simulation studies highlight significant gains in both computational and statistical efficiency, relative to competing likelihood-based approaches, when applying our novel estimators to make inference with popular extremal dependence models, such as max-stable, $r$-Pareto, and random scale mixture process models. We also illustrate that it is possible to train a single neural Bayes estimator for a general censoring level, precluding the need to retrain the network when the censoring level is changed. We illustrate the efficacy of our estimators by making fast inference on hundreds-of-thousands of high-dimensional spatial extremal dependence models to assess extreme particulate matter 2.5 microns or less in diameter (PM2.5) concentration over the whole of Saudi Arabia.
Given samples of a real or complex-valued function on a set of distinct nodes, the traditional linear Chebyshev approximation is to compute the best minimax approximation on a prescribed linear functional space. Lawson's iteration is a classical and well-known method for that task. However, Lawson's iteration converges linearly and in many cases, the convergence is very slow. In this paper, by the duality theory of linear programming, we first provide an elementary and self-contained proof for the well-known Alternation Theorem in the real case. Also, relying upon the Lagrange duality, we further establish an $L_q$-weighted dual programming for the linear Chebyshev approximation. In this framework, we revisit the convergence of Lawson's iteration, and moreover, propose a Newton type iteration, the interior-point method, to solve the $L_2$-weighted dual programming. Numerical experiments are reported to demonstrate its fast convergence and its capability in finding the reference points that characterize the unique minimax approximation.
In the context of adaptive remeshing, the virtual element method provides significant advantages over the finite element method. The attractive features of the virtual element method, such as the permission of arbitrary element geometries, and the seamless permission of 'hanging' nodes, have inspired many works concerning error estimation and adaptivity. However, these works have primarily focused on adaptive refinement techniques with little attention paid to adaptive coarsening (i.e. de-refinement) techniques that are required for the development of fully adaptive remeshing procedures. In this work novel indicators are proposed for the identification of patches/clusters of elements to be coarsened, along with a novel procedure to perform the coarsening. The indicators are computed over prospective patches of elements rather than on individual elements to identify the most suitable combinations of elements to coarsen. The coarsening procedure is robust and suitable for meshes of structured and unstructured/Voronoi elements. Numerical results demonstrate the high degree of efficacy of the proposed coarsening procedures and sensible mesh evolution during the coarsening process. It is demonstrated that critical mesh geometries, such as non-convex corners and holes, are preserved during coarsening, and that meshes remain fine in regions of interest to engineers, such as near singularities.
We present the full approximation scheme constraint decomposition (FASCD) multilevel method for solving variational inequalities (VIs). FASCD is a common extension of both the full approximation scheme (FAS) multigrid technique for nonlinear partial differential equations, due to A.~Brandt, and the constraint decomposition (CD) method introduced by X.-C.~Tai for VIs arising in optimization. We extend the CD idea by exploiting the telescoping nature of certain function space subset decompositions arising from multilevel mesh hierarchies. When a reduced-space (active set) Newton method is applied as a smoother, with work proportional to the number of unknowns on a given mesh level, FASCD V-cycles exhibit nearly mesh-independent convergence rates, and full multigrid cycles are optimal solvers. The example problems include differential operators which are symmetric linear, nonsymmetric linear, and nonlinear, in unilateral and bilateral VI problems.
The hazard function represents one of the main quantities of interest in the analysis of survival data. We propose a general approach for modelling the dynamics of the hazard function using systems of autonomous ordinary differential equations (ODEs). This modelling approach can be used to provide qualitative and quantitative analyses of the evolution of the hazard function over time. Our proposal capitalises on the extensive literature of ODEs which, in particular, allow for establishing basic rules or laws on the dynamics of the hazard function via the use of autonomous ODEs. We show how to implement the proposed modelling framework in cases where there is an analytic solution to the system of ODEs or where an ODE solver is required to obtain a numerical solution. We focus on the use of a Bayesian modelling approach, but the proposed methodology can also be coupled with maximum likelihood estimation. A simulation study is presented to illustrate the performance of these models and the interplay of sample size and censoring. Two case studies using real data are presented to illustrate the use of the proposed approach and to highlight the interpretability of the corresponding models. We conclude with a discussion on potential extensions of our work and strategies to include covariates into our framework.
We study the problem of estimating non-linear functionals of discrete distributions in the context of local differential privacy. The initial data $x_1,\ldots,x_n \in [K]$ are supposed i.i.d. and distributed according to an unknown discrete distribution $p = (p_1,\ldots,p_K)$. Only $\alpha$-locally differentially private (LDP) samples $z_1,...,z_n$ are publicly available, where the term 'local' means that each $z_i$ is produced using one individual attribute $x_i$. We exhibit privacy mechanisms (PM) that are interactive (i.e. they are allowed to use already published confidential data) or non-interactive. We describe the behavior of the quadratic risk for estimating the power sum functional $F_{\gamma} = \sum_{k=1}^K p_k^{\gamma}$, $\gamma >0$ as a function of $K, \, n$ and $\alpha$. In the non-interactive case, we study two plug-in type estimators of $F_{\gamma}$, for all $\gamma >0$, that are similar to the MLE analyzed by Jiao et al. (2017) in the multinomial model. However, due to the privacy constraint the rates we attain are slower and similar to those obtained in the Gaussian model by Collier et al. (2020). In the interactive case, we introduce for all $\gamma >1$ a two-step procedure which attains the faster parametric rate $(n \alpha^2)^{-1/2}$ when $\gamma \geq 2$. We give lower bounds results over all $\alpha$-LDP mechanisms and all estimators using the private samples.
This work studies how the choice of the representation for parametric, spatially distributed inputs to elliptic partial differential equations (PDEs) affects the efficiency of a polynomial surrogate, based on Taylor expansion, for the parameter-to-solution map. In particular, we show potential advantages of representations using functions with localized supports. As model problem, we consider the steady-state diffusion equation, where the diffusion coefficient and right-hand side depend smoothly but potentially in a \textsl{highly nonlinear} way on a parameter $y\in [-1,1]^{\mathbb{N}}$. Following previous work for affine parameter dependence and for the lognormal case, we use pointwise instead of norm-wise bounds to prove $\ell^p$-summability of the Taylor coefficients of the solution. As application, we consider surrogates for solutions to elliptic PDEs on parametric domains. Using a mapping to a nominal configuration, this case fits in the general framework, and higher convergence rates can be attained when modeling the parametric boundary via spatially localized functions. The theoretical results are supported by numerical experiments for the parametric domain problem, illustrating the efficiency of the proposed approach and providing further insight on numerical aspects. Although the methods and ideas are carried out for the steady-state diffusion equation, they extend easily to other elliptic and parabolic PDEs.
We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems for which the observational map is based on partial differential equations and, consequently, is computationally expensive to evaluate. A-optimality is a widely used and easy-to-interpret criterion for Bayesian experimental design. This criterion seeks the optimal experimental design by minimizing the expected conditional variance, which is also known as the expected posterior variance. This study presents a novel likelihood-free approach to the A-optimal experimental design that does not require sampling or integrating the Bayesian posterior distribution. The expected conditional variance is obtained via the variance of the conditional expectation using the law of total variance, and we take advantage of the orthogonal projection property to approximate the conditional expectation. We derive an asymptotic error estimation for the proposed estimator of the expected conditional variance and show that the intractability of the posterior distribution does not affect the performance of our approach. We use an artificial neural network (ANN) to approximate the nonlinear conditional expectation in the implementation of our method. We then extend our approach for dealing with the case that the domain of experimental design parameters is continuous by integrating the training process of the ANN into minimizing the expected conditional variance. Through numerical experiments, we demonstrate that our method greatly reduces the number of observation model evaluations compared with widely used importance sampling-based approaches. This reduction is crucial, considering the high computational cost of the observational models. Code is available at //github.com/vinh-tr-hoang/DOEviaPACE.