Transient errors from the dynamic NISQ noise landscape are challenging to comprehend and are especially detrimental to classes of applications that are iterative and/or long-running, and therefore their timely mitigation is important for quantum advantage in real-world applications. The most popular examples of iterative long-running quantum applications are variational quantum algorithms (VQAs). Iteratively, VQA's classical optimizer evaluates circuit candidates on an objective function and picks the best circuits towards achieving the application's target. Noise fluctuation can cause a significant transient impact on the objective function estimation of the VQA iterations / tuning candidates. This can severely affect VQA tuning and, by extension, its accuracy and convergence. This paper proposes QISMET: Quantum Iteration Skipping to Mitigate Error Transients, to navigate the dynamic noise landscape of VQAs. QISMET actively avoids instances of high fluctuating noise which are predicted to have a significant transient error impact on specific VQA iterations. To achieve this, QISMET estimates transient error in VQA iterations and designs a controller to keep the VQA tuning faithful to the transient-free scenario. By doing so, QISMET efficiently mitigates a large portion of the transient noise impact on VQAs and is able to improve the fidelity by 1.3x-3x over a traditional VQA baseline, with 1.6-2.4x improvement over alternative approaches, across different applications and machines. Further, to diligently analyze the effects of transients, this work also builds transient noise models for target VQA applications from observing real machine transients. These are then integrated with the Qiskit simulator.
Generalized linear models (GLMs) are popular for data-analysis in almost all quantitative sciences, but the choice of likelihood family and link function is often difficult. This motivates the search for likelihoods and links that minimize the impact of potential misspecification. We perform a large-scale simulation study on double-bounded and lower-bounded response data where we systematically vary both true and assumed likelihoods and links. In contrast to previous studies, we also study posterior calibration and uncertainty metrics in addition to point-estimate accuracy. Our results indicate that certain likelihoods and links can be remarkably robust to misspecification, performing almost on par with their respective true counterparts. Additionally, normal likelihood models with identity link (i.e., linear regression) often achieve calibration comparable to the more structurally faithful alternatives, at least in the studied scenarios. On the basis of our findings, we provide practical suggestions for robust likelihood and link choices in GLMs.
This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with $L^{\infty}$-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems (convection-dominated diffusion, as well as the high-frequency Helmholtz, Maxwell and elastic wave equations with impedance boundary conditions), and higher-order problems. Notably, we prove a local convergence rate of $O(e^{-cn^{1/d}})$ for MS-GFEM for all these problems, improving upon the $O(e^{-cn^{1/(d+1)}})$ rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green's functions admit an $O(|\log\epsilon|^{d})$-term separable approximation on well-separated domains with error $\epsilon>0$. Our analysis improves and generalizes the result in [M. Bebendorf and W. Hackbusch, Numerische Mathematik, 95 (2003), pp.~1-28] where an $O(|\log\epsilon|^{d+1})$-term separable approximation was proved for Poisson-type problems.
The maximum likelihood estimator (MLE) is pivotal in statistical inference, yet its application is often hindered by the absence of closed-form solutions for many models. This poses challenges in real-time computation scenarios, particularly within embedded systems technology, where numerical methods are impractical. This study introduces a generalized form of the MLE that yields closed-form estimators under certain conditions. We derive the asymptotic properties of the proposed estimator and demonstrate that our approach retains key properties such as invariance under one-to-one transformations, strong consistency, and an asymptotic normal distribution. The effectiveness of the generalized MLE is exemplified through its application to the Gamma, Nakagami, and Beta distributions, showcasing improvements over the traditional MLE. Additionally, we extend this methodology to a bivariate gamma distribution, successfully deriving closed-form estimators. This advancement presents significant implications for real-time statistical analysis across various applications.
Feedforward neural networks (FNNs) are typically viewed as pure prediction algorithms, and their strong predictive performance has led to their use in many machine-learning applications. However, their flexibility comes with an interpretability trade-off; thus, FNNs have been historically less popular among statisticians. Nevertheless, classical statistical theory, such as significance testing and uncertainty quantification, is still relevant. Supplementing FNNs with methods of statistical inference, and covariate-effect visualisations, can shift the focus away from black-box prediction and make FNNs more akin to traditional statistical models. This can allow for more inferential analysis, and, hence, make FNNs more accessible within the statistical-modelling context.
We propose a novel and simple spectral method based on the semi-discrete Fourier transforms to discretize the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$. Numerical analysis and experiments are provided to study its performance. Our method has the same symbol $|\xi|^\alpha$ as the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$ at the discrete level, and thus it can be viewed as the exact discrete analogue of the fractional Laplacian. This {\it unique feature} distinguishes our method from other existing methods for the fractional Laplacian. Note that our method is different from the Fourier pseudospectral methods in the literature, which are usually limited to periodic boundary conditions (see Remark \ref{remark0}). Numerical analysis shows that our method can achieve a spectral accuracy. The stability and convergence of our method in solving the fractional Poisson equations were analyzed. Our scheme yields a multilevel Toeplitz stiffness matrix, and thus fast algorithms can be developed for efficient matrix-vector products. The computational complexity is ${\mathcal O}(2N\log(2N))$, and the memory storage is ${\mathcal O}(N)$ with $N$ the total number of points. Extensive numerical experiments verify our analytical results and demonstrate the effectiveness of our method in solving various problems.
It has been classically conjectured that the brain assigns probabilistic models to sequences of stimuli. An important issue associated with this conjecture is the identification of the classes of models used by the brain to perform this task. We address this issue by using a new clustering procedure for sets of electroencephalographic (EEG) data recorded from participants exposed to a sequence of auditory stimuli generated by a stochastic chain. This clustering procedure indicates that the brain uses renewal points in the stochastic sequence of auditory stimuli in order to build a model.
This tutorial shows how various Bayesian survival models can be fitted using the integrated nested Laplace approximation in a clear, legible, and comprehensible manner using the INLA and INLAjoint R-packages. Such models include accelerated failure time, proportional hazards, mixture cure, competing risks, multi-state, frailty, and joint models of longitudinal and survival data, originally presented in the article "Bayesian survival analysis with BUGS" (Alvares et al., 2021). In addition, we illustrate the implementation of a new joint model for a longitudinal semicontinuous marker, recurrent events, and a terminal event. Our proposal aims to provide the reader with syntax examples for implementing survival models using a fast and accurate approximate Bayesian inferential approach.
We consider a Canonical Polyadic (CP) decomposition approach to low-rank tensor completion (LRTC) by incorporating external pairwise similarity relations through graph Laplacian regularization on the CP factor matrices. The usage of graph regularization entails benefits in the learning accuracy of LRTC, but at the same time, induces coupling graph Laplacian terms that hinder the optimization of the tensor completion model. In order to solve graph-regularized LRTC, we propose efficient alternating minimization algorithms by leveraging the block structure of the underlying CP decomposition-based model. For the subproblems of alternating minimization, a linear conjugate gradient subroutine is specifically adapted to graph-regularized LRTC. Alternatively, we circumvent the complicating coupling effects of graph Laplacian terms by using an alternating directions method of multipliers. Based on the Kurdyka-{\L}ojasiewicz property, we show that the sequence generated by the proposed algorithms globally converges to a critical point of the objective function. Moreover, the complexity and convergence rate are also derived. In addition, numerical experiments including synthetic data and real data show that the graph regularized tensor completion model has improved recovery results compared to those without graph regularization, and that the proposed algorithms achieve gains in time efficiency over existing algorithms.
We present NCCSG, a nonsmooth optimization method. In each iteration, NCCSG finds the best length-constrained descent direction by considering the worst bound over all local subgradients. NCCSG can take advantage of local smoothness or local strong convexity of the objective function. We prove a few global convergence rates of NCCSG. For well-behaved nonsmooth functions (characterized by the weak smooth property), NCCSG converges in $O(\frac{1}{\epsilon} \log \frac{1}{\epsilon})$ iterations, where $\epsilon$ is the desired optimality gap. For smooth functions and strongly-convex smooth functions, NCCSG achieves the lower bound of convergence rates of blackbox first-order methods, i.e., $O(\frac{1}{\epsilon})$ for smooth functions and $O(\log \frac{1}{\epsilon})$ for strongly-convex smooth functions. The efficiency of NCCSG depends on the efficiency of solving a minimax optimization problem involving the subdifferential of the objective function in each iteration.
This paper studies two hybrid discontinuous Galerkin (HDG) discretizations for the velocity-density formulation of the compressible Stokes equations with respect to several desired structural properties, namely provable convergence, the preservation of non-negativity and mass constraints for the density, and gradient-robustness. The later property dramatically enhances the accuracy in well-balanced situations, such as the hydrostatic balance where the pressure gradient balances the gravity force. One of the studied schemes employs an H(div)-conforming velocity ansatz space which ensures all mentioned properties, while a fully discontinuous method is shown to satisfy all properties but the gradient-robustness. Also higher-order schemes for both variants are presented and compared in three numerical benchmark problems. The final example shows the importance also for non-hydrostatic well-balanced states for the compressible Navier-Stokes equations.