亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies two hybrid discontinuous Galerkin (HDG) discretizations for the velocity-density formulation of the compressible Stokes equations with respect to several desired structural properties, namely provable convergence, the preservation of non-negativity and mass constraints for the density, and gradient-robustness. The later property dramatically enhances the accuracy in well-balanced situations, such as the hydrostatic balance where the pressure gradient balances the gravity force. One of the studied schemes employs an H(div)-conforming velocity ansatz space which ensures all mentioned properties, while a fully discontinuous method is shown to satisfy all properties but the gradient-robustness. Also higher-order schemes for both variants are presented and compared in three numerical benchmark problems. The final example shows the importance also for non-hydrostatic well-balanced states for the compressible Navier-Stokes equations.

相關內容

Pseudo-Hamiltonian neural networks (PHNN) were recently introduced for learning dynamical systems that can be modelled by ordinary differential equations. In this paper, we extend the method to partial differential equations. The resulting model is comprised of up to three neural networks, modelling terms representing conservation, dissipation and external forces, and discrete convolution operators that can either be learned or be given as input. We demonstrate numerically the superior performance of PHNN compared to a baseline model that models the full dynamics by a single neural network. Moreover, since the PHNN model consists of three parts with different physical interpretations, these can be studied separately to gain insight into the system, and the learned model is applicable also if external forces are removed or changed.

The causal inference literature frequently focuses on estimating the mean of the potential outcome, whereas the quantiles of the potential outcome may carry important additional information. We propose a universal approach, based on the inverse estimating equations, to generalize a wide class of causal inference solutions from estimating the mean of the potential outcome to its quantiles. We assume that an identifying moment function is available to identify the mean of the threshold-transformed potential outcome, based on which a convenient construction of the estimating equation of quantiles of potential outcome is proposed. In addition, we also give a general construction of the efficient influence functions of the mean and quantiles of potential outcomes, and identify their connection. We motivate estimators for the quantile estimands with the efficient influence function, and develop their asymptotic properties when either parametric models or data-adaptive machine learners are used to estimate the nuisance functions. A broad implication of our results is that one can rework the existing result for mean causal estimands to facilitate causal inference on quantiles, rather than starting from scratch. Our results are illustrated by several examples.

Semi-simplicial and semi-cubical sets are commonly defined as presheaves over respectively, the semi-simplex or semi-cube category. Homotopy Type Theory then popularized an alternative definition, where the set of n-simplices or n-cubes are instead regrouped into the families of the fibers over their faces, leading to a characterization we call indexed. Moreover, it is known that semi-simplicial and semi-cubical sets are related to iterated Reynolds parametricity, respectively in its unary and binary variants. We exploit this correspondence to develop an original uniform indexed definition of both augmented semi-simplicial and semi-cubical sets, and fully formalize it in Coq.

This paper is concerned with the multi-frequency factorization method for imaging the support of a wave-number-dependent source function. It is supposed that the source function is given by the inverse Fourier transform of some time-dependent source with a priori given radiating period. Using the multi-frequency far-field data at a fixed observation direction, we provide a computational criterion for characterizing the smallest strip containing the support and perpendicular to the observation direction. The far-field data from sparse observation directions can be used to recover a $\Theta$-convex polygon of the support. The inversion algorithm is proven valid even with multi-frequency near-field data in three dimensions. The connections to time-dependent inverse source problems are discussed in the near-field case. Numerical tests in both two and three dimensions are implemented to show effectiveness and feasibility of the approach. This paper provides numerical analysis for a frequency-domain approach to recover the support of an admissible class of time-dependent sources.

Laguerre spectral approximations play an important role in the development of efficient algorithms for problems in unbounded domains. In this paper, we present a comprehensive convergence rate analysis of Laguerre spectral approximations for analytic functions. By exploiting contour integral techniques from complex analysis, we prove that Laguerre projection and interpolation methods of degree $n$ converge at the root-exponential rate $O(\exp(-2\rho\sqrt{n}))$ with $\rho>0$ when the underlying function is analytic inside and on a parabola with focus at the origin and vertex at $z=-\rho^2$. As far as we know, this is the first rigorous proof of root-exponential convergence of Laguerre approximations for analytic functions. Several important applications of our analysis are also discussed, including Laguerre spectral differentiations, Gauss-Laguerre quadrature rules, the scaling factor and the Weeks method for the inversion of Laplace transform, and some sharp convergence rate estimates are derived. Numerical experiments are presented to verify the theoretical results.

Approximate Bayesian computation (ABC) methods are standard tools for inferring parameters of complex models when the likelihood function is analytically intractable. A popular approach to improving the poor acceptance rate of the basic rejection sampling ABC algorithm is to use sequential Monte Carlo (ABC SMC) to produce a sequence of proposal distributions adapting towards the posterior, instead of generating values from the prior distribution of the model parameters. Proposal distribution for the subsequent iteration is typically obtained from a weighted set of samples, often called particles, of the current iteration of this sequence. Current methods for constructing these proposal distributions treat all the particles equivalently, regardless of the corresponding value generated by the sampler, which may lead to inefficiency when propagating the information across iterations of the algorithm. To improve sampler efficiency, we introduce a modified approach called stratified distance ABC SMC. Our algorithm stratifies particles based on their distance between the corresponding synthetic and observed data, and then constructs distinct proposal distributions for all the strata. Taking into account the distribution of distances across the particle space leads to substantially improved acceptance rate of the rejection sampling. We further show that efficiency can be gained by introducing a novel stopping rule for the sequential process based on the stratified posterior samples and demonstrate these advances by several examples.

This paper presents the development of a complete CAD-compatible framework for structural shape optimization in 3D. The boundaries of the domain are described using NURBS while the interior is discretized with B\'ezier tetrahedra. The tetrahedral mesh is obtained from the mesh generator software Gmsh. A methodology to reconstruct the NURBS surfaces from the triangular faces of the boundary mesh is presented. The description of the boundary is used for the computation of the analytical sensitivities with respect to the control points employed in surface design. Further, the mesh is updated at each iteration of the structural optimization process by a pseudo-elastic moving mesh method. In this procedure, the existing mesh is deformed to match the updated surface and therefore reduces the need for remeshing. Numerical examples are presented to test the performance of the proposed method. The use of the movable mesh technique results in a considerable decrease in the computational effort for the numerical examples.

We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.

We construct the first rigorously justified probabilistic algorithm for recovering the solution operator of a hyperbolic partial differential equation (PDE) in two variables from input-output training pairs. The primary challenge of recovering the solution operator of hyperbolic PDEs is the presence of characteristics, along which the associated Green's function is discontinuous. Therefore, a central component of our algorithm is a rank detection scheme that identifies the approximate location of the characteristics. By combining the randomized singular value decomposition with an adaptive hierarchical partition of the domain, we construct an approximant to the solution operator using $O(\Psi_\epsilon^{-1}\epsilon^{-7}\log(\Xi_\epsilon^{-1}\epsilon^{-1}))$ input-output pairs with relative error $O(\Xi_\epsilon^{-1}\epsilon)$ in the operator norm as $\epsilon\to0$, with high probability. Here, $\Psi_\epsilon$ represents the existence of degenerate singular values of the solution operator, and $\Xi_\epsilon$ measures the quality of the training data. Our assumptions on the regularity of the coefficients of the hyperbolic PDE are relatively weak given that hyperbolic PDEs do not have the ``instantaneous smoothing effect'' of elliptic and parabolic PDEs, and our recovery rate improves as the regularity of the coefficients increases.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司