We study the mean field Langevin dynamics and the associated particle system. By assuming the functional convexity of the energy, we obtain the $L^p$-convergence of the marginal distributions towards the unique invariant measure for the mean field dynamics. Furthermore, we prove the uniform-in-time propagation of chaos in both the $L^2$-Wasserstein metric and relative entropy.
Despite the progress in medical data collection the actual burden of SARS-CoV-2 remains unknown due to under-ascertainment of cases. This was apparent in the acute phase of the pandemic and the use of reported deaths has been pointed out as a more reliable source of information, likely less prone to under-reporting. Since daily deaths occur from past infections weighted by their probability of death, one may infer the total number of infections accounting for their age distribution, using the data on reported deaths. We adopt this framework and assume that the dynamics generating the total number of infections can be described by a continuous time transmission model expressed through a system of non-linear ordinary differential equations where the transmission rate is modelled as a diffusion process allowing to reveal both the effect of control strategies and the changes in individuals behavior. We develop this flexible Bayesian tool in Stan and study 3 pairs of European countries, estimating the time-varying reproduction number($R_t$) as well as the true cumulative number of infected individuals. As we estimate the true number of infections we offer a more accurate estimate of $R_t$. We also provide an estimate of the daily reporting ratio and discuss the effects of changes in mobility and testing on the inferred quantities.
We study some properties of a multi-species degenerate Ginzburg-Landau energy and its relation to a cross-diffusion Cahn-Hilliard system. The model is motivated by multicomponent mixtures where crossdiffusion effects between the different species are taken into account, and where only one species does separate from the others. Using a comparison argument, we obtain strict bounds on the minimizers from which we can derive first-order optimality conditions, revealing a link with the single-species energy, and providing enough regularity to qualify the minimizers as stationary solutions of the evolution system. We also discuss convexity properties of the energy as well as long time asymptotics of the time-dependent problem. Lastly, we introduce a structure-preserving finite volume scheme for the time-dependent problem and present several numerical experiments in one and two spatial dimensions.
A dynamic mean field theory is developed for finite state and action Bayesian reinforcement learning in the large state space limit. In an analogy with statistical physics, the Bellman equation is studied as a disordered dynamical system; the Markov decision process transition probabilities are interpreted as couplings and the value functions as deterministic spins that evolve dynamically. Thus, the mean-rewards and transition probabilities are considered to be quenched random variables. The theory reveals that, under certain assumptions, the state-action values are statistically independent across state-action pairs in the asymptotic state space limit, and provides the form of the distribution exactly. The results hold in the finite and discounted infinite horizon settings, for both value iteration and policy evaluation. The state-action value statistics can be computed from a set of mean field equations, which we call dynamic mean field programming (DMFP). For policy evaluation the equations are exact. For value iteration, approximate equations are obtained by appealing to extreme value theory or bounds. The result provides analytic insight into the statistical structure of tabular reinforcement learning, for example revealing the conditions under which reinforcement learning is equivalent to a set of independent multi-armed bandit problems.
The conventional understanding of adversarial training in generative adversarial networks (GANs) is that the discriminator is trained to estimate a divergence, and the generator learns to minimize this divergence. We argue that despite the fact that many variants of GANs were developed following this paradigm, the current theoretical understanding of GANs and their practical algorithms are inconsistent. In this paper, we leverage Wasserstein gradient flows which characterize the evolution of particles in the sample space, to gain theoretical insights and algorithmic inspiration of GANs. We introduce a unified generative modeling framework - MonoFlow: the particle evolution is rescaled via a monotonically increasing mapping of the log density ratio. Under our framework, adversarial training can be viewed as a procedure first obtaining MonoFlow's vector field via training the discriminator and the generator learns to draw the particle flow defined by the corresponding vector field. We also reveal the fundamental difference between variational divergence minimization and adversarial training. This analysis helps us to identify what types of generator loss functions can lead to the successful training of GANs and suggest that GANs may have more loss designs beyond the literature (e.g., non-saturated loss), as long as they realize MonoFlow. Consistent empirical studies are included to validate the effectiveness of our framework.
Data objects taking value in a general metric space have become increasingly common in modern data analysis. In this paper, we study two important statistical inference problems, namely, two-sample testing and change-point detection, for such non-Euclidean data under temporal dependence. Typical examples of non-Euclidean valued time series include yearly mortality distributions, time-varying networks, and covariance matrix time series. To accommodate unknown temporal dependence, we advance the self-normalization (SN) technique (Shao, 2010) to the inference of non-Euclidean time series, which is substantially different from the existing SN-based inference for functional time series that reside in Hilbert space (Zhang et al., 2011). Theoretically, we propose new regularity conditions that could be easier to check than those in the recent literature, and derive the limiting distributions of the proposed test statistics under both null and local alternatives. For change-point detection problem, we also derive the consistency for the change-point location estimator, and combine our proposed change-point test with wild binary segmentation to perform multiple change-point estimation. Numerical simulations demonstrate the effectiveness and robustness of our proposed tests compared with existing methods in the literature. Finally, we apply our tests to two-sample inference in mortality data and change-point detection in cryptocurrency data.
Learning multi-agent system dynamics has been extensively studied for various real-world applications, such as molecular dynamics in biology. Most of the existing models are built to learn single system dynamics from observed historical data and predict the future trajectory. In practice, however, we might observe multiple systems that are generated across different environments, which differ in latent exogenous factors such as temperature and gravity. One simple solution is to learn multiple environment-specific models, but it fails to exploit the potential commonalities among the dynamics across environments and offers poor prediction results where per-environment data is sparse or limited. Here, we present GG-ODE (Generalized Graph Ordinary Differential Equations), a machine learning framework for learning continuous multi-agent system dynamics across environments. Our model learns system dynamics using neural ordinary differential equations (ODE) parameterized by Graph Neural Networks (GNNs) to capture the continuous interaction among agents. We achieve the model generalization by assuming the dynamics across different environments are governed by common physics laws that can be captured via learning a shared ODE function. The distinct latent exogenous factors learned for each environment are incorporated into the ODE function to account for their differences. To improve model performance, we additionally design two regularization losses to (1) enforce the orthogonality between the learned initial states and exogenous factors via mutual information minimization; and (2) reduce the temporal variance of learned exogenous factors within the same system via contrastive learning. Experiments over various physical simulations show that our model can accurately predict system dynamics, especially in the long range, and can generalize well to new systems with few observations.
Stochastic gradient MCMC (SGMCMC) offers a scalable alternative to traditional MCMC, by constructing an unbiased estimate of the gradient of the log-posterior with a small, uniformly-weighted subsample of the data. While efficient to compute, the resulting gradient estimator may exhibit a high variance and impact sampler performance. The problem of variance control has been traditionally addressed by constructing a better stochastic gradient estimator, often using control variates. We propose to use a discrete, non-uniform probability distribution to preferentially subsample data points that have a greater impact on the stochastic gradient. In addition, we present a method of adaptively adjusting the subsample size at each iteration of the algorithm, so that we increase the subsample size in areas of the sample space where the gradient is harder to estimate. We demonstrate that such an approach can maintain the same level of accuracy while substantially reducing the average subsample size that is used.
Modeling sounds emitted from physical object interactions is critical for immersive perceptual experiences in real and virtual worlds. Traditional methods of impact sound synthesis use physics simulation to obtain a set of physics parameters that could represent and synthesize the sound. However, they require fine details of both the object geometries and impact locations, which are rarely available in the real world and can not be applied to synthesize impact sounds from common videos. On the other hand, existing video-driven deep learning-based approaches could only capture the weak correspondence between visual content and impact sounds since they lack of physics knowledge. In this work, we propose a physics-driven diffusion model that can synthesize high-fidelity impact sound for a silent video clip. In addition to the video content, we propose to use additional physics priors to guide the impact sound synthesis procedure. The physics priors include both physics parameters that are directly estimated from noisy real-world impact sound examples without sophisticated setup and learned residual parameters that interpret the sound environment via neural networks. We further implement a novel diffusion model with specific training and inference strategies to combine physics priors and visual information for impact sound synthesis. Experimental results show that our model outperforms several existing systems in generating realistic impact sounds. More importantly, the physics-based representations are fully interpretable and transparent, thus enabling us to perform sound editing flexibly.
Cook and Reckhow 1979 pointed out that NP is not closed under complementation iff there is no propositional proof system that admits polynomial size proofs of all tautologies. Theory of proof complexity generators aims at constructing sets of tautologies hard for strong and possibly for all proof systems. We focus at a conjecture from K.2004 in foundations of the theory that there is a proof complexity generator hard for all proof systems. This can be equivalently formulated (for p-time generators) without a reference to proof complexity notions as follows: * There exist a p-time function $g$ stretching each input by one bit such that its range intersects all infinite NP sets. We consider several facets of this conjecture, including its links to bounded arithmetic (witnessing and independence results), to time-bounded Kolmogorov complexity, to feasible disjunction property of propositional proof systems and to complexity of proof search. We argue that a specific gadget generator from K.2009 is a good candidate for $g$. We define a new hardness property of generators, the $\bigvee$-hardness, and shows that one specific gadget generator is the $\bigvee$-hardest (w.r.t. any sufficiently strong proof system). We define the class of feasibly infinite NP sets and show, assuming a hypothesis from circuit complexity, that the conjecture holds for all feasibly infinite NP sets.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.