亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hamilton-Jacobi (HJ) reachability-based filtering provides a powerful framework to co-optimize performance and safety (or liveness) for autonomous systems. Under this filtering scheme, a nominal controller is minimally modified to ensure system safety or liveness. However, the resulting controllers can exhibit abrupt switching and bang-bang behavior, which is not suitable for applications of autonomous systems in the real world. This work presents a novel, unifying framework to design safety and liveness filters through reachability analysis. We explicitly characterize the maximal set of control inputs that ensures safety (or liveness) at a given state. Different safety filters can then be constructed using different subsets of this maximal set along with a projection operator to modify the nominal controller. We use the proposed framework to design three safety filters, each balancing performance, computation time, and smoothness differently. The proposed filters can easily handle dynamics uncertainties, disturbances, and bounded control inputs. We highlight their relative strengths and limitations by applying these filters to autonomous navigation and rocket landing scenarios and on a physical robot testbed. We also discuss practical aspects associated with implementing these filters on real-world autonomous systems. Our research advances the understanding and potential application of reachability-based controllers on real-world autonomous systems.

相關內容

In autonomous driving, predicting the behavior (turning left, stopping, etc.) of target vehicles is crucial for the self-driving vehicle to make safe decisions and avoid accidents. Existing deep learning-based methods have shown excellent and accurate performance, but the black-box nature makes it untrustworthy to apply them in practical use. In this work, we explore the interpretability of behavior prediction of target vehicles by an Episodic Memory implanted Neural Decision Tree (abbrev. eMem-NDT). The structure of eMem-NDT is constructed by hierarchically clustering the text embedding of vehicle behavior descriptions. eMem-NDT is a neural-backed part of a pre-trained deep learning model by changing the soft-max layer of the deep model to eMem-NDT, for grouping and aligning the memory prototypes of the historical vehicle behavior features in training data on a neural decision tree. Each leaf node of eMem-NDT is modeled by a neural network for aligning the behavior memory prototypes. By eMem-NDT, we infer each instance in behavior prediction of vehicles by bottom-up Memory Prototype Matching (MPM) (searching the appropriate leaf node and the links to the root node) and top-down Leaf Link Aggregation (LLA) (obtaining the probability of future behaviors of vehicles for certain instances). We validate eMem-NDT on BLVD and LOKI datasets, and the results show that our model can obtain a superior performance to other methods with clear explainability. The code is available at //github.com/JWFangit/eMem-NDT.

Digital twin (DT) platforms are increasingly regarded as a promising technology for controlling, optimizing, and monitoring complex engineering systems such as next-generation wireless networks. An important challenge in adopting DT solutions is their reliance on data collected offline, lacking direct access to the physical environment. This limitation is particularly severe in multi-agent systems, for which conventional multi-agent reinforcement (MARL) requires online interactions with the environment. A direct application of online MARL schemes to an offline setting would generally fail due to the epistemic uncertainty entailed by the limited availability of data. In this work, we propose an offline MARL scheme for DT-based wireless networks that integrates distributional RL and conservative Q-learning to address the environment's inherent aleatoric uncertainty and the epistemic uncertainty arising from limited data. To further exploit the offline data, we adapt the proposed scheme to the centralized training decentralized execution framework, allowing joint training of the agents' policies. The proposed MARL scheme, referred to as multi-agent conservative quantile regression (MA-CQR) addresses general risk-sensitive design criteria and is applied to the trajectory planning problem in drone networks, showcasing its advantages.

We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC) in the finite blocklength regime that provides Post-Quantum (PQ) security at high communication rates. Recently, hybrid cryptosystems offered PQ security by premixing the data using secure coding schemes and encrypting only a small portion of it, assuming the data is uniformly distributed. An assumption that is often challenging to enforce. Standard fixed-length lossless source coding and compression schemes guarantee a uniform output in normalized divergence. Yet, his is not sufficient to guarantee security. We consider an efficient almost uniform compression scheme in non-normalized variational distance for the proposed hybrid cryptosystem, that by utilizing uniform sub-linear shared seed, guarantees PQ security. Specifically, for the proposed PQ cryptosystem, first, we provide an end-to-end coding scheme, NU-HUNCC, for non-uniform messages. Second, we show that NU-HUNCC is information-theoretic individually secured (IS) against an eavesdropper with access to any subset of the links. Third, we introduce a modified security definition, individually semantically secure under a chosen ciphertext attack (ISS-CCA1), and show that against an all-observing eavesdropper, NU-HUNCC satisfies its conditions. Finally, we provide an analysis that shows the high communication rate of NU-HUNCC and the negligibility of the shared seed size.

Stacked intelligent metasurfaces (SIM) are capable of emulating reconfigurable physical neural networks by relying on electromagnetic (EM) waves as carriers. They can also perform various complex computational and signal processing tasks. A SIM is fabricated by densely integrating multiple metasurface layers, each consisting of a large number of small meta-atoms that can control the EM waves passing through it. In this paper, we harness a SIM for two-dimensional (2D) direction-of-arrival (DOA) estimation. In contrast to the conventional designs, an advanced SIM in front of the receiver array automatically carries out the 2D discrete Fourier transform (DFT) as the incident waves propagate through it. As a result, the receiver array directly observes the angular spectrum of the incoming signal. In this context, the DOA estimates can be readily obtained by using probes to detect the energy distribution on the receiver array. This avoids the need for power-thirsty radio frequency (RF) chains. To enable SIM to perform the 2D DFT, we formulate the optimization problem of minimizing the fitting error between the SIM's EM response and the 2D DFT matrix. Furthermore, a gradient descent algorithm is customized for iteratively updating the phase shift of each meta-atom in SIM. To further improve the DOA estimation accuracy, we configure the phase shift pattern in the zeroth layer of the SIM to generate a set of 2D DFT matrices associated with orthogonal spatial frequency bins. Additionally, we analytically evaluate the performance of the proposed SIM-based DOA estimator by deriving a tight upper bound for the mean square error (MSE). Our numerical simulations verify the capability of a well-trained SIM to perform DOA estimation and corroborate our theoretical analysis. It is demonstrated that a SIM having an optical computational speed achieves an MSE of $10^{-4}$ for DOA estimation.

Quantum annealing (QA) is proposed for vector perturbation precoding (VPP) in multiple input multiple output (MIMO) communications systems. The mathematical framework of VPP is presented, outlining the problem formulation and the benefits of lattice reduction algorithms. Lattice reduction aided quantum vector perturbation (LRAQVP) is designed by harnessing physical quantum hardware, and the optimization of hardware parameters is discussed. We observe a 5dB gain over lattice reduction zero forcing precoding (LRZFP), which behaves similarly to a quantum annealing algorithm operating without a lattice reduction stage. The proposed algorithm is also shown to approach the performance of a sphere encoder, which exhibits an exponentially escalating complexity.

Robust fine-tuning aims to ensure performance on out-of-distribution (OOD) samples, which is sometimes compromised by pursuing adaptation on in-distribution (ID) samples. However, another criterion for reliable machine learning -- confidence calibration has been overlooked despite its increasing demand for real-world high-stakes applications, e.g., autonomous driving. We raise concerns about the calibration of fine-tuned vision-language models (VLMs) under distribution shift by showing that naive fine-tuning and even state-of-the-art robust fine-tuning hurt the calibration of pre-trained VLMs, especially on OOD datasets. We first show the OOD calibration error is bounded from above with ID calibration errors and domain discrepancy between ID and OOD. From this analysis, we propose CaRot, a calibrated robust fine-tuning method that incentivizes ID calibration and robust prediction across domains to reduce the upper bound of OOD calibration error. Extensive experiments on three types of distribution shifts (natural, synthetic, and adversarial) on ImageNet-1K classification demonstrate the effectiveness of CaRot across diverse environments. We justify the empirical success of CaRot through our theoretical analysis.

We present a distributed quasi-Newton (DQN) method, which enables a group of agents to compute an optimal solution of a separable multi-agent optimization problem locally using an approximation of the curvature of the aggregate objective function. Each agent computes a descent direction from its local estimate of the aggregate Hessian, obtained from quasi-Newton approximation schemes using the gradient of its local objective function. Moreover, we introduce a distributed quasi-Newton method for equality-constrained optimization (EC-DQN), where each agent takes Karush-Kuhn-Tucker-like update steps to compute an optimal solution. In our algorithms, each agent communicates with its one-hop neighbors over a peer-to-peer communication network to compute a common solution. We prove convergence of our algorithms to a stationary point of the optimization problem. In addition, we demonstrate the competitive empirical convergence of our algorithm in both well-conditioned and ill-conditioned optimization problems, in terms of the computation time and communication cost incurred by each agent for convergence, compared to existing distributed first-order and second-order methods. Particularly, in ill-conditioned problems, our algorithms achieve a faster computation time for convergence, while requiring a lower communication cost, across a range of communication networks with different degrees of connectedness, by leveraging information on the curvature of the problem.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司