The intensive flow of personal data associated with the trend of computerizing aspects of people's diversity in their daily lives is associated with issues concerning not only people protection and their trust in new technologies, but also bias in the analysis of data and problems in their management and reuse. Faced with a complex problem, the strategies adopted, including technologies and services, often focus on individual aspects, which are difficult to integrate into a broader framework, which can be of effective support for researchers and developers. Therefore, we argue for the development of an end-to-end research infrastructure (RI) that enables trustworthy diversity-aware data within a citizen science community.
The purpose of the research is to determine if currently available self-supervised learning techniques can accomplish human level comprehension of visual images using the same degree and amount of sensory input that people acquire from. Initial research on this topic solely considered data volume scaling. Here, we scale both the volume of data and the quality of the image. This scaling experiment is a self-supervised learning method that may be done without any outside financing. We find that scaling up data volume and picture resolution at the same time enables human-level item detection performance at sub-human sizes.We run a scaling experiment with vision transformers trained on up to 200000 images up to 256 ppi.
Very distinct strategies can be deployed to recognize and characterize an unknown environment or a shape. A recent and promising approach, especially in robotics, is to reduce the complexity of the exploratory units to a minimum. Here, we show that this frugal strategy can be taken to the extreme by exploiting the power of statistical geometry and introducing new invariant features. We show that an elementary robot devoid of any orientation or observation system, exploring randomly, can access global information about an environment such as the values of the explored area and perimeter. The explored shapes are of arbitrary geometry and may even non-connected. From a dictionary, this most simple robot can thus identify various shapes such as famous monuments and even read a text.
This paper addresses the issues of controlling and analyzing the population diversity in quantum-behaved particle swarm optimization (QPSO), which is an optimization approach motivated by concepts in quantum mechanics and PSO. In order to gain an in-depth understanding of the role the diversity plays in the evolving process, we first define the genotype diversity by the distance to the average point of the particles' positions and the phenotype diversity by the fitness values for the QPSO. Then, the correlations between the two types of diversities and the search performance are tested and analyzed on several benchmark functions, and the distance-to-average-point diversity is showed to have stronger association with the search performance during the evolving processes. Finally, in the light of the performed diversity analyses, two strategies for controlling the distance-to-average-point diversities are proposed for the purpose of improving the search ability of the QPSO algorithm. Empirical studies on the QPSO with the introduced diversity control methods are performed on a set of benchmark functions from the CEC 2005 benchmark suite. The performance of the proposed methods are evaluated and compared with the original QPSO and other PSO variants.
This article presents the openCFS submodule scattered data reader for coupling multi-physical simulations performed in different simulation programs. For instance, by considering a forward-coupling of a surface vibration simulation (mechanical system) to an acoustic propagation simulation using time-dependent acoustic absorbing material as a noise mitigation measure. The nearest-neighbor search of the target and source points from the interpolation is performed using the FLANN or the CGAL library. In doing so, the coupled field (e.g., surface velocity) is interpolated from a source representation consisting of field values physically stored and organized in a file directory to a target representation being the quadrature points in the case of the finite element method. A test case of the functionality is presented in the "testsuite" module of the openCFS software called "Abc2dcsvt". This scattered data reader module was successfully applied in numerous studies on flow-induced sound generation. Within this short article, the functionality, and usability of this module are described.
Hardware implementations of Spiking Neural Networks (SNNs) represent a promising approach to edge-computing for applications that require low-power and low-latency, and which cannot resort to external cloud-based computing services. However, most solutions proposed so far either support only relatively small networks, or take up significant hardware resources, to implement large networks. To realize large-scale and scalable SNNs it is necessary to develop an efficient asynchronous communication and routing fabric that enables the design of multi-core architectures. In particular the core interface that manages inter-core spike communication is a crucial component as it represents the bottleneck of Power-Performance-Area (PPA) especially for the arbitration architecture and the routing memory. In this paper we present an arbitration mechanism with the corresponding asynchronous encoding pipeline circuits, based on hierarchical arbiter trees. The proposed scheme reduces the latency by more than 70% in sparse-event mode, compared to the state-of-the-art arbitration architectures, with lower area cost. The routing memory makes use of asynchronous Content Addressable Memory (CAM) with Current Sensing Completion Detection (CSCD), which saves approximately 46% energy, and achieves a 40% increase in throughput against conventional asynchronous CAM using configurable delay lines, at the cost of only a slight increase in area. In addition as it radically reduces the core interface resources in multi-core neuromorphic processors, the arbitration architecture and CAM architecture we propose can be also applied to a wide range of general asynchronous circuits and systems.
We propose, analyze and realize a variational multiclass segmentation scheme that partitions a given image into multiple regions exhibiting specific properties. Our method determines multiple functions that encode the segmentation regions by minimizing an energy functional combining information from different channels. Multichannel image data can be obtained by lifting the image into a higher dimensional feature space using specific multichannel filtering or may already be provided by the imaging modality under consideration, such as an RGB image or multimodal medical data. Experimental results show that the proposed method performs well in various scenarios. In particular, promising results are presented for two medical applications involving classification of brain abscess and tumor growth, respectively. As main theoretical contributions, we prove the existence of global minimizers of the proposed energy functional and show its stability and convergence with respect to noisy inputs. In particular, these results also apply to the special case of binary segmentation, and these results are also novel in this particular situation.
Estimating causal effects from observational network data is a significant but challenging problem. Existing works in causal inference for observational network data lack an analysis of the generalization bound, which can theoretically provide support for alleviating the complex confounding bias and practically guide the design of learning objectives in a principled manner. To fill this gap, we derive a generalization bound for causal effect estimation in network scenarios by exploiting 1) the reweighting schema based on joint propensity score and 2) the representation learning schema based on Integral Probability Metric (IPM). We provide two perspectives on the generalization bound in terms of reweighting and representation learning, respectively. Motivated by the analysis of the bound, we propose a weighting regression method based on the joint propensity score augmented with representation learning. Extensive experimental studies on two real-world networks with semi-synthetic data demonstrate the effectiveness of our algorithm.
We study the convergence and error estimates of a finite volume method for the compressible Navier-Stokes-Fourier system with Dirichlet boundary conditions. Physical fluid domain is typically smooth and needs to be approximated by a polygonal computational domain. This leads to domain-related discretization errors, the so-called variational crimes. To treat them efficiently we embed the fluid domain into a large enough cubed domain, and propose a finite volume scheme for the corresponding domain-penalized problem. Under the assumption that the numerical density and temperature are uniformly bounded, we derive the ballistic energy inequality, yielding a priori estimates and the consistency of the penalization finite volume approximations. Further, we show that the numerical solutions converge weakly to a generalized, the so-called dissipative measure-valued, solution of the corresponding Dirichlet problem. If a strong solution exists, we prove that our numerical approximations converge strongly with the rate 1/4. Additionally, assuming uniform boundedness of the approximate velocities, we obtain global existence of the strong solution. In this case we prove that the numerical solutions converge strongly to the strong solution with the optimal rate 1/2.
A population-averaged additive subdistribution hazards model is proposed to assess the marginal effects of covariates on the cumulative incidence function and to analyze correlated failure time data subject to competing risks. This approach extends the population-averaged additive hazards model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is outlined to estimate the regression coefficients and a new sandwich variance estimator is proposed. The proposed sandwich variance estimator accounts for both the correlations between failure times and between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness-of-fit tests to assess the adequacy of the additive structure of the subdistribution hazards for the overall model and each covariate. Simulation studies are conducted to investigate the performance of the proposed methods in finite samples. We illustrate our methods using data from the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) trial.
We introduce a new tensor integration method for time-dependent PDEs that controls the tensor rank of the PDE solution via time-dependent diffeomorphic coordinate transformations. Such coordinate transformations are generated by minimizing the normal component of the PDE operator relative to the tensor manifold that approximates the PDE solution via a convex functional. The proposed method significantly improves upon and may be used in conjunction with the coordinate-adaptive algorithm we recently proposed in JCP (2023) Vol. 491, 112378, which is based on non-convex relaxations of the rank minimization problem and Riemannian optimization. Numerical applications demonstrating the effectiveness of the proposed coordinate-adaptive tensor integration method are presented and discussed for prototype Liouville and Fokker-Planck equations.