亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In traditional system identification, we estimate a model of an unknown dynamical system based on given input/output sequences and available physical knowledge. Yet, is it also possible to understand the intricacies of dynamical systems not solely from their input/output patterns, but by observing the behavior of other systems within the same class? This central question drives the study presented in this paper. In response to this query, we introduce a novel paradigm for system identification, addressing two primary tasks: one-step-ahead prediction and multi-step simulation. Unlike conventional methods, we do not directly estimate a model for the specific system. Instead, we pretrain a meta model that represents a class of dynamical systems. This meta model is trained from a potentially infinite stream of synthetic data, generated by systems randomly extracted from a certain distribution. At its core, the meta model serves as an implicit representation of the main characteristics of a class of dynamical systems. When provided with a brief context from a new system - specifically, a short input/output sequence - the meta model implicitly discerns its dynamics, enabling predictions of its behavior. The proposed approach harnesses the power of Transformer architectures, renowned for their in-context learning capabilities in Natural Language Processing tasks. For one-step prediction, a GPT-like decoder-only architecture is utilized, whereas the simulation problem employs an encoder-decoder structure. Initial experimental results affirmatively answer our foundational question, opening doors to fresh research avenues in system identification.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 標量 · 講稿 ·
2023 年 10 月 12 日

We present a polymorphic linear lambda-calculus as a proof language for second-order intuitionistic linear logic. The calculus includes addition and scalar multiplication, enabling the proof of a linearity result at the syntactic level.

Static stability in economic models means negative incentives for deviation from equilibrium strategies, which we expect to assure a return to equilibrium, i.e., dynamic stability, as long as agents respond to incentives. There have been many attempts to prove this link, especially in evolutionary game theory, yielding both negative and positive results. This paper presents a universal and intuitive approach to this link. We prove that static stability assures dynamic stability if agents' choices of switching strategies are rationalizable by introducing costs and constraints in those switching decisions. This idea guides us to define \textit{net }gains from switches as the payoff improvement after deducting the costs. Under rationalizable dynamics, an agent maximizes the expected net gain subject to the constraints. We prove that the aggregate maximized expected net gain works as a Lyapunov function. It also explains reasons behind the known negative results. While our analysis here is confined to myopic evolutionary dynamics in population games, our approach is applicable to more complex situations.

Recurrent neural networks (RNNs) have yielded promising results for both recognizing objects in challenging conditions and modeling aspects of primate vision. However, the representational dynamics of recurrent computations remain poorly understood, especially in large-scale visual models. Here, we studied such dynamics in RNNs trained for object classification on MiniEcoset, a novel subset of ecoset. We report two main insights. First, upon inference, representations continued to evolve after correct classification, suggesting a lack of the notion of being ``done with classification''. Second, focusing on ``readout zones'' as a way to characterize the activation trajectories, we observe that misclassified representations exhibit activation patterns with lower L2 norm, and are positioned more peripherally in the readout zones. Such arrangements help the misclassified representations move into the correct zones as time progresses. Our findings generalize to networks with lateral and top-down connections, and include both additive and multiplicative interactions with the bottom-up sweep. The results therefore contribute to a general understanding of RNN dynamics in naturalistic tasks. We hope that the analysis framework will aid future investigations of other types of RNNs, including understanding of representational dynamics in primate vision.

Language models (LMs) have recently flourished in natural language processing and computer vision, generating high-fidelity texts or images in various tasks. In contrast, the current speech generative models are still struggling regarding speech quality and task generalization. This paper presents Vec-Tok Speech, an extensible framework that resembles multiple speech generation tasks, generating expressive and high-fidelity speech. Specifically, we propose a novel speech codec based on speech vectors and semantic tokens. Speech vectors contain acoustic details contributing to high-fidelity speech reconstruction, while semantic tokens focus on the linguistic content of speech, facilitating language modeling. Based on the proposed speech codec, Vec-Tok Speech leverages an LM to undertake the core of speech generation. Moreover, Byte-Pair Encoding (BPE) is introduced to reduce the token length and bit rate for lower exposure bias and longer context coverage, improving the performance of LMs. Vec-Tok Speech can be used for intra- and cross-lingual zero-shot voice conversion (VC), zero-shot speaking style transfer text-to-speech (TTS), speech-to-speech translation (S2ST), speech denoising, and speaker de-identification and anonymization. Experiments show that Vec-Tok Speech, built on 50k hours of speech, performs better than other SOTA models. Code will be available at //github.com/BakerBunker/VecTok .

The lock set method and the partial order method are two main approaches to guarantee that dynamic data race prediction remains efficient. There are many variations of these ideas. Common to all of them is the assumption that the events in a critical section belong to the same thread. We have evidence that critical sections in the wild do extend across thread boundaries even if the surrounding acquire and release events occur in the same thread. We introduce the novel concept of a cross-thread critical section to capture such situations, offer a theoretical comprehensive framework, and study their impact on state-of-the-art data race analyses. For sound partial order relations such as WCP, SDP, and DCtp, the occurrence of cross-thread critical sections negatively impacts their precision. For complete partial order relations such as WDP and PWR, cross-thread critical sections help to eliminate more false positives. The same (positive) impact applies to the lock set construction. Our experimental evaluation confirms that cross-thread critical sections arise in practice. For the complete relation PWR, we are able to reduce the number of false positives. The performance overhead incurred by tracking cross-thread critical sections slows down the analysis by 10\%-20\%, on average.

Prognostic Health Management aims to predict the Remaining Useful Life (RUL) of degrading components/systems utilizing monitoring data. These RUL predictions form the basis for optimizing maintenance planning in a Predictive Maintenance (PdM) paradigm. We here propose a metric for assessing data-driven prognostic algorithms based on their impact on downstream PdM decisions. The metric is defined in association with a decision setting and a corresponding PdM policy. We consider two typical PdM decision settings, namely component ordering and/or replacement planning, for which we investigate and improve PdM policies that are commonly utilized in the literature. All policies are evaluated via the data-based estimation of the long-run expected maintenance cost per unit time, using monitored run-to-failure experiments. The policy evaluation enables the estimation of the proposed metric. We employ the metric as an objective function for optimizing heuristic PdM policies and algorithms' hyperparameters. The effect of different PdM policies on the metric is initially investigated through a theoretical numerical example. Subsequently, we employ four data-driven prognostic algorithms on a simulated turbofan engine degradation problem, and investigate the joint effect of prognostic algorithm and PdM policy on the metric, resulting in a decision-oriented performance assessment of these algorithms.

We propose a framework to solve non-linear and history-dependent mechanical problems based on a hybrid classical computer-quantum annealer approach. Quantum Computers are anticipated to solve particular operations exponentially faster. The available possible operations are however not as versatile as with a classical computer. However, quantum annealers (QAs) is well suited to evaluate the minimum state of a Hamiltonian quadratic potential. Therefore, we reformulate the elasto-plastic finite element problem as a double minimisation process framed at the structural scale using the variational updates formulation. In order to comply with the expected quadratic nature of the Hamiltonian, the resulting non-linear minimisation problems are iteratively solved with the suggested Quantum Annealing-assisted Sequential Quadratic Programming (QA-SQP): a sequence of minimising quadratic problems is performed by approximating the objective function by a quadratic Taylor's series. Each quadratic minimisation problem of continuous variables is then transformed into a binary quadratic problem. This binary quadratic minimisation problem can be solved on quantum annealing hardware such as the D-Wave system. The applicability of the proposed framework is demonstrated with one and two-dimensional elasto-plastic numerical benchmarks. The current work provides a pathway of performing general non-linear finite element simulations assisted by quantum computing.

Private synthetic data sharing is preferred as it keeps the distribution and nuances of original data compared to summary statistics. The state-of-the-art methods adopt a select-measure-generate paradigm, but measuring large domain marginals still results in much error and allocating privacy budget iteratively is still difficult. To address these issues, our method employs a partition-based approach that effectively reduces errors and improves the quality of synthetic data, even with a limited privacy budget. Results from our experiments demonstrate the superiority of our method over existing approaches. The synthetic data produced using our approach exhibits improved quality and utility, making it a preferable choice for private synthetic data sharing.

The emergence of complex structures in the systems governed by a simple set of rules is among the most fascinating aspects of Nature. The particularly powerful and versatile model suitable for investigating this phenomenon is provided by cellular automata, with the Game of Life being one of the most prominent examples. However, this simplified model can be too limiting in providing a tool for modelling real systems. To address this, we introduce and study an extended version of the Game of Life, with the dynamical process governing the rule selection at each step. We show that the introduced modification significantly alters the behaviour of the game. We also demonstrate that the choice of the synchronization policy can be used to control the trade-off between the stability and the growth in the system.

Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.

北京阿比特科技有限公司