Approximating a univariate function on the interval $[-1,1]$ with a polynomial is among the most classical problems in numerical analysis. When the function evaluations come with noise, a least-squares fit is known to reduce the effect of noise as more samples are taken. The generic algorithm for the least-squares problem requires $O(Nn^2)$ operations, where $N+1$ is the number of sample points and $n$ is the degree of the polynomial approximant. This algorithm is unstable when $n$ is large, for example $n\gg \sqrt{N}$ for equispaced sample points. In this study, we blend numerical analysis and statistics to introduce a stable and fast $O(N\log N)$ algorithm called NoisyChebtrunc based on the Chebyshev interpolation. It has the same error reduction effect as least-squares and the convergence is spectral until the error reaches $O(\sigma \sqrt{{n}/{N}})$, where $\sigma$ is the noise level, after which the error continues to decrease at the Monte-Carlo $O(1/\sqrt{N})$ rate. To determine the polynomial degree, NoisyChebtrunc employs a statistical criterion, namely Mallows' $C_p$. We analyze NoisyChebtrunc in terms of the variance and concentration in the infinity norm to the underlying noiseless function. These results show that with high probability the infinity-norm error is bounded by a small constant times $\sigma \sqrt{{n}/{N}}$, when the noise {is} independent and follows a subgaussian or subexponential distribution. We illustrate the performance of NoisyChebtrunc with numerical experiments.
In the recent breakthrough work \cite{xu2023lack}, a rigorous numerical analysis was conducted on the numerical solution of a scalar ODE containing a cubic polynomial derived from the Allen-Cahn equation. It was found that only the implicit Euler method converge to the correct steady state for any given initial value $u_0$ under the unique solvability and energy stability. But all the other commonly used second-order numerical schemes exhibit sensitivity to initial conditions and may converge to an incorrect equilibrium state as $t_n\to\infty$. This indicates that energy stability may not be decisive for the long-term qualitative correctness of numerical solutions. We found that using another fundamental property of the solution, namely monotonicity instead of energy stability, is sufficient to ensure that many common numerical schemes converge to the correct equilibrium state. This leads us to introduce the critical step size constant $h^*=h^*(u_0,\epsilon)$ that ensures the monotonicity and unique solvability of the numerical solutions, where the scaling parameter $\epsilon \in(0,1)$. We prove that the implicit Euler scheme $h^*=h^*(\epsilon)$, which is independent of $u_0$ and only depends on $\epsilon$. Hence regardless of the initial value taken, the simulation can be guaranteed to be correct when $h<h^*$. But for various other numerical methods, no mater how small the step size $h$ is in advance, there will always be initial values that cause simulation errors. In fact, for these numerical methods, we prove that $\inf_{u_0\in \mathbb{R}}h^*(u_0,\epsilon)=0$. Various numerical experiments are used to confirm the theoretical analysis.
If an algorithm is to be counted as a practically working solution to a decision problem, then the algorithm must must verifiable in some constructed and ``trusted'' theory such as PA or ZF. In this paper, a class of decision problems related to inconsistency proofs for a general class of formal theories is used to demonstrate that under this constructibility restriction, an unformalizable yet arguably convincing argument can be given for the existence of decision problems for which there exists an explicitly constructible algorithm recognizing correct solutions in polynomial time, but for which there exists no explicitly constructible solution algorithm. While these results do not solve the P versus NP problem in the classical sense of supplying a proof one way or the other in a ``trusted'' formal theory, arguably they resolve the natural constructive version of the problem.
We consider logics with truth values in the unit interval $[0,1]$. Such logics are used to define queries and to define probability distributions. In this context the notion of almost sure equivalence of formulas is generalized to the notion of asymptotic equivalence. We prove two new results about the asymptotic equivalence of formulas where each result has a convergence law as a corollary. These results as well as several older results can be formulated as results about the relative asymptotic expressivity of inference frameworks. An inference framework $\mathbf{F}$ is a class of pairs $(\mathbb{P}, L)$, where $\mathbb{P} = (\mathbb{P}_n : n = 1, 2, 3, \ldots)$, $\mathbb{P}_n$ are probability distributions on the set $\mathbf{W}_n$ of all $\sigma$-structures with domain $\{1, \ldots, n\}$ (where $\sigma$ is a first-order signature) and $L$ is a logic with truth values in the unit interval $[0, 1]$. An inference framework $\mathbf{F}'$ is asymptotically at least as expressive as an inference framework $\mathbf{F}$ if for every $(\mathbb{P}, L) \in \mathbf{F}$ there is $(\mathbb{P}', L') \in \mathbf{F}'$ such that $\mathbb{P}$ is asymptotically total variation equivalent to $\mathbb{P}'$ and for every $\varphi(\bar{x}) \in L$ there is $\varphi'(\bar{x}) \in L'$ such that $\varphi'(\bar{x})$ is asymptotically equivalent to $\varphi(\bar{x})$ with respect to $\mathbb{P}$. This relation is a preorder. If, in addition, $\mathbf{F}$ is at least as expressive as $\mathbf{F}'$ then we say that $\mathbf{F}$ and $\mathbf{F}'$ are asymptotically equally expressive. Our third contribution is to systematize the new results of this paper and several previous results in order to get a preorder on a number of inference systems that are of relevance in the context of machine learning and artificial intelligence.
We consider the inverse problem of reconstructing an unknown function $u$ from a finite set of measurements, under the assumption that $u$ is the trajectory of a transport-dominated problem with unknown input parameters. We propose an algorithm based on the Parameterized Background Data-Weak method (PBDW) where dynamical sensor placement is combined with approximation spaces that evolve in time. We prove that the method ensures an accurate reconstruction at all times and allows to incorporate relevant physical properties in the reconstructed solutions by suitably evolving the dynamical approximation space. As an application of this strategy we consider Hamiltonian systems modeling wave-type phenomena, where preservation of the geometric structure of the flow plays a crucial role in the accuracy and stability of the reconstructed trajectory.
We investigate shift-invariant vectorial Boolean functions on $n$ bits that are induced from Boolean functions on $k$ bits, for $k\leq n$. We consider such functions that are not necessarily permutations, but are, in some sense, almost bijective, and their cryptographic properties. In this context, we define an almost lifting as a Boolean function for which there is an upper bound on the number of collisions of its induced functions that does not depend on $n$. We show that if a Boolean function with diameter $k$ is an almost lifting, then the maximum number of collisions of its induced functions is $2^{k-1}$ for any $n$. Moreover, we search for functions in the class of almost liftings that have good cryptographic properties and for which the non-bijectivity does not cause major security weaknesses. These functions generalize the well-known map $\chi$ used in the Keccak hash function.
We improve bounds on the degree and sparsity of Boolean functions representing the Legendre symbol as well as on the $N$th linear complexity of the Legendre sequence. We also prove similar results for both the Liouville function for integers and its analog for polynomials over $\mathbb{F}_2$, or more general for any (binary) arithmetic function which satisfies $f(2n)=-f(n)$ for $n=1,2,\ldots$
We explore the theoretical possibility of learning $d$-dimensional targets with $W$-parameter models by gradient flow (GF) when $W<d$. Our main result shows that if the targets are described by a particular $d$-dimensional probability distribution, then there exist models with as few as two parameters that can learn the targets with arbitrarily high success probability. On the other hand, we show that for $W<d$ there is necessarily a large subset of GF-non-learnable targets. In particular, the set of learnable targets is not dense in $\mathbb R^d$, and any subset of $\mathbb R^d$ homeomorphic to the $W$-dimensional sphere contains non-learnable targets. Finally, we observe that the model in our main theorem on almost guaranteed two-parameter learning is constructed using a hierarchical procedure and as a result is not expressible by a single elementary function. We show that this limitation is essential in the sense that most models written in terms of elementary functions cannot achieve the learnability demonstrated in this theorem.
We propose a new numerical method for $\alpha$-dissipative solutions of the Hunter-Saxton equation, where $\alpha$ belongs to $W^{1, \infty}(\mathbb{R}, [0, 1))$. The method combines a projection operator with a generalized method of characteristics and an iteration scheme, which is based on enforcing minimal time steps whenever breaking times cluster. Numerical examples illustrate that these minimal time steps increase the efficiency of the algorithm substantially. Moreover, convergence of the wave profile is shown in $C([0, T], L^{\infty}(\mathbb{R}))$ for any finite $T \geq 0$.
QAC$^0$ is the class of constant-depth quantum circuits with polynomially many ancillary qubits, where Toffoli gates on arbitrarily many qubits are allowed. In this work, we show that the parity function cannot be computed in QAC$^0$, resolving a long-standing open problem in quantum circuit complexity more than twenty years old. As a result, this proves ${\rm QAC}^0 \subsetneqq {\rm QAC}_{\rm wf}^0$. We also show that any QAC circuit of depth $d$ that approximately computes parity on $n$ bits requires $2^{\widetilde{\Omega}(n^{1/d})}$ ancillary qubits, which is close to tight. This implies a similar lower bound on approximately preparing cat states using QAC circuits. Finally, we prove a quantum analog of the Linial-Mansour-Nisan theorem for QAC$^0$. This implies that, for any QAC$^0$ circuit $U$ with $a={\rm poly}(n)$ ancillary qubits, and for any $x\in\{0,1\}^n$, the correlation between $Q(x)$ and the parity function is bounded by ${1}/{2} + 2^{-\widetilde{\Omega}(n^{1/d})}$, where $Q(x)$ denotes the output of measuring the output qubit of $U|x,0^a\rangle$. All the above consequences rely on the following technical result. If $U$ is a QAC$^0$ circuit with $a={\rm poly}(n)$ ancillary qubits, then there is a distribution $\mathcal{D}$ of bounded polynomials of degree polylog$(n)$ such that with high probability, a random polynomial from $\mathcal{D}$ approximates the function $\langle x,0^a| U^\dag Z_{n+1} U |x,0^a\rangle$ for a large fraction of $x\in \{0,1\}^n$. This result is analogous to the Razborov-Smolensky result on the approximation of AC$^0$ circuits by random low-degree polynomials.
We consider the problem of counting the copies of a length-$k$ pattern $\sigma$ in a sequence $f \colon [n] \to \mathbb{R}$, where a copy is a subset of indices $i_1 < \ldots < i_k \in [n]$ such that $f(i_j) < f(i_\ell)$ if and only if $\sigma(j) < \sigma(\ell)$. This problem is motivated by a range of connections and applications in ranking, nonparametric statistics, combinatorics, and fine-grained complexity, especially when $k$ is a small fixed constant. Recent advances have significantly improved our understanding of counting and detecting patterns. Guillemot and Marx [2014] demonstrated that the detection variant is solvable in $O(n)$ time for any fixed $k$. Their proof has laid the foundations for the discovery of the twin-width, a concept that has notably advanced parameterized complexity in recent years. Counting, in contrast, is harder: it has a conditional lower bound of $n^{\Omega(k / \log k)}$ [Berendsohn, Kozma, and Marx 2019] and is expected to be polynomially harder than detection as early as $k = 4$, given its equivalence to counting $4$-cycles in graphs [Dudek and Gawrychowski, 2020]. In this work, we design a deterministic near-linear time $(1+\varepsilon)$-approximation algorithm for counting $\sigma$-copies in $f$ for all $k \leq 5$. Combined with the conditional lower bound for $k=4$, this establishes the first known separation between approximate and exact algorithms for pattern counting. Interestingly, our algorithm leverages the Birg\'e decomposition -- a sublinear tool for monotone distributions widely used in distribution testing -- which, to our knowledge, has not been applied in a pattern counting context before.