We introduce Probabilistic Guarded Kleene Algebra with Tests (ProbGKAT), an extension of GKAT that allows reasoning about uninterpreted imperative programs with probabilistic branching. We give its operational semantics in terms of special class of probabilistic automata. We give a sound and complete Salomaa-style axiomatisation of bisimilarity of ProbGKAT expressions. Finally, we show that bisimilarity of ProbGKAT expressions can be decided in $O(n^3 \log n)$ time via a generic partition refinement algorithm.
In a simple connected graph $G=(V,E)$, a subset of vertices $S \subseteq V$ is a dominating set if any vertex $v \in V\setminus S$ is adjacent to some vertex $x$ from this subset. A number of real-life problems can be modeled using this problem which is known to be among the difficult NP-hard problems in its class. We formulate the problem as an integer liner program (ILP) and compare the performance with the two earlier existing exact state-of-the-art algorithms and exact implicit enumeration and heuristic algorithms that we propose here. Our exact algorithm was able to find optimal solutions much faster than ILP and the above two exact algorithms for middle-dense instances. For graphs with a considerable size, our heuristic algorithm was much faster than both, ILP and our exact algorithm. It found an optimal solution for more than half of the tested instances, whereas it improved the earlier known state-of-the-art solutions for almost all the tested benchmark instances. Among the instances where the optimum was not found, it gave an average approximation error of $1.18$.
With read-aloud speech synthesis achieving high naturalness scores, there is a growing research interest in synthesising spontaneous speech. However, human spontaneous face-to-face conversation has both spoken and non-verbal aspects (here, co-speech gestures). Only recently has research begun to explore the benefits of jointly synthesising these two modalities in a single system. The previous state of the art used non-probabilistic methods, which fail to capture the variability of human speech and motion, and risk producing oversmoothing artefacts and sub-optimal synthesis quality. We present the first diffusion-based probabilistic model, called Diff-TTSG, that jointly learns to synthesise speech and gestures together. Our method can be trained on small datasets from scratch. Furthermore, we describe a set of careful uni- and multi-modal subjective tests for evaluating integrated speech and gesture synthesis systems, and use them to validate our proposed approach. For synthesised examples please see //shivammehta25.github.io/Diff-TTSG
Despite the successes of probabilistic models based on passing noise through neural networks, recent work has identified that such methods often fail to capture tail behavior accurately, unless the tails of the base distribution are appropriately calibrated. To overcome this deficiency, we propose a systematic approach for analyzing the tails of random variables, and we illustrate how this approach can be used during the static analysis (before drawing samples) pass of a probabilistic programming language compiler. To characterize how the tails change under various operations, we develop an algebra which acts on a three-parameter family of tail asymptotics and which is based on the generalized Gamma distribution. Our algebraic operations are closed under addition and multiplication; they are capable of distinguishing sub-Gaussians with differing scales; and they handle ratios sufficiently well to reproduce the tails of most important statistical distributions directly from their definitions. Our empirical results confirm that inference algorithms that leverage our heavy-tailed algebra attain superior performance across a number of density modeling and variational inference tasks.
We present a generalization of first-order syntactic unification to a term algebra where variables belong to disjoint, total, linearly ordered sets referred to as variable classes. Unlike First-order syntactic unification, the number of variables within a given problem is not finitely bound as some variable classes are associated with self-referencing recursive substitutions allowing the construction of infinitely deep terms containing infinitely many variables, what we refer to as arithmetic progressive terms. Such constructions are related to inductive reasoning. We show that unifiability is decidable for so-called simple linear loops and conjecture decidability for less restrictive classes.
Multivariate sequential data collected in practice often exhibit temporal irregularities, including nonuniform time intervals and component misalignment. However, if uneven spacing and asynchrony are endogenous characteristics of the data rather than a result of insufficient observation, the information content of these irregularities plays a defining role in characterizing the multivariate dependence structure. Existing approaches for probabilistic forecasting either overlook the resulting statistical heterogeneities, are susceptible to imputation biases, or impose parametric assumptions on the data distribution. This paper proposes an end-to-end solution that overcomes these limitations by allowing the observation arrival times to play the central role of model construction, which is at the core of temporal irregularities. To acknowledge temporal irregularities, we first enable unique hidden states for components so that the arrival times can dictate when, how, and which hidden states to update. We then develop a conditional flow representation to non-parametrically represent the data distribution, which is typically non-Gaussian, and supervise this representation by carefully factorizing the log-likelihood objective to select conditional information that facilitates capturing time variation and path dependency. The broad applicability and superiority of the proposed solution are confirmed by comparing it with existing approaches through ablation studies and testing on real-world datasets.
In a Subgraph Problem we are given some graph and want to find a feasible subgraph that optimizes some measure. We consider Multistage Subgraph Problems (MSPs), where we are given a sequence of graph instances (stages) and are asked to find a sequence of subgraphs, one for each stage, such that each is optimal for its respective stage and the subgraphs for subsequent stages are as similar as possible. We present a framework that provides a $(1/\sqrt{2\chi})$-approximation algorithm for the $2$-stage restriction of an MSP if the similarity of subsequent solutions is measured as the intersection cardinality and said MSP is preficient, i.e., we can efficiently find a single-stage solution that prefers some given subset. The approximation factor is dependent on the instance's intertwinement $\chi$, a similarity measure for multistage graphs. We also show that for any MSP, independent of similarity measure and preficiency, given an exact or approximation algorithm for a constant number of stages, we can approximate the MSP for an unrestricted number of stages. Finally, we combine and apply these results and show that the above restrictions describe a very rich class of MSPs and that proving membership for this class is mostly straightforward. As examples, we explicitly state these proofs for natural multistage versions of Perfect Matching, Shortest s-t-Path, Minimum s-t-Cut and further classical problems on bipartite or planar graphs, namely Maximum Cut, Vertex Cover, Independent Set, and Biclique.
Lewis' theory of counterfactuals is the foundation of many contemporary notions of causality. In this paper, we extend this theory in the temporal direction to enable symbolic counterfactual reasoning on infinite sequences, such as counterexamples found by a model checker and trajectories produced by a reinforcement learning agent. In particular, our extension considers a more relaxed notion of similarity between worlds and proposes two additional counterfactual operators that close a semantic gap between the previous two in this more general setting. Further, we consider versions of counterfactuals that minimize the distance to the witnessing counterfactual worlds, a common requirement in causal analysis. To automate counterfactual reasoning in the temporal domain, we introduce a logic that combines temporal and counterfactual operators, and outline decision procedures for the satisfiability and trace-checking problems of this logic.
In this paper, we propose and analyze the least squares finite element methods for the linear elasticity interface problem in the stress-displacement system on unfitted meshes. We consider the cases that the interface is $C^2$ or polygonal, and the exact solution $(\sigma,u)$ belongs to $H^s(div; \Omega_0 \cup \Omega_1) \times $H^{1+s}(\Omega_0 \cup \Omega_1)$ with $s > 1/2$. Two types of least squares functionals are defined to seek the numerical solution. The first is defined by simply applying the $L^2$ norm least squares principle, and requires the condition $s \geq 1$. The second is defined with a discrete minus norm, which is related to the inner product in $H^{-1/2}(\Gamma)$. The use of this discrete minus norm results in a method of optimal convergence rates and allows the exact solution has the regularity of any $s > 1/2$. The stability near the interface for both methods is guaranteed by the ghost penalty bilinear forms and we can derive the robust condition number estimates. The convergence rates under $L^2$ norm and the energy norm are derived for both methods. We illustrate the accuracy and the robustness of the proposed methods by a series of numerical experiments for test problems in two and three dimensions.
The surge in multimodal AI's success has sparked concerns over data privacy in vision-and-language tasks. While CLIP has revolutionized multimodal learning through joint training on images and text, its potential to unintentionally disclose sensitive information necessitates the integration of privacy-preserving mechanisms. We introduce a differentially private adaptation of the Contrastive Language-Image Pretraining (CLIP) model that effectively addresses privacy concerns while retaining accuracy. Our proposed method, Dp-CLIP, is rigorously evaluated on benchmark datasets encompassing diverse vision-and-language tasks such as image classification and visual question answering. We demonstrate that our approach retains performance on par with the standard non-private CLIP model. Furthermore, we analyze our proposed algorithm under linear representation settings. We derive the convergence rate of our algorithm and show a trade-off between utility and privacy when gradients are clipped per-batch and the loss function does not satisfy smoothness conditions assumed in the literature for the analysis of DP-SGD.
Causal effect estimation from observational data is a fundamental task in empirical sciences. It becomes particularly challenging when unobserved confounders are involved in a system. This paper focuses on front-door adjustment -- a classic technique which, using observed mediators allows to identify causal effects even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. Recently, Jeong, Tian, and Barenboim [NeurIPS 2022] have presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given directed acyclic graph (DAG), with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the causal graph. In our work, we give the first linear-time, i.e., $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity. This result implies an $O(n(n+m))$ delay enumeration algorithm of all front-door adjustment sets, again improving previous work by Jeong et al. by a factor of $n^3$. Moreover, we provide the first linear-time algorithm for finding a minimal front-door adjustment set. We offer implementations of our algorithms in multiple programming languages to facilitate practical usage and empirically validate their feasibility, even for large graphs.