In the realm of tensor optimization, low-rank tensor decomposition, particularly Tucker decomposition, stands as a pivotal technique for reducing the number of parameters and for saving storage. We embark on an exploration of Tucker tensor varieties -- the set of tensors with bounded Tucker rank -- in which the geometry is notably more intricate than the well-explored geometry of matrix varieties. We give an explicit parametrization of the tangent cone of Tucker tensor varieties and leverage its geometry to develop provable gradient-related line-search methods for optimization on Tucker tensor varieties. The search directions are computed from approximate projections of antigradient onto the tangent cone, which circumvents the calculation of intractable metric projections. To the best of our knowledge, this is the first work concerning geometry and optimization on Tucker tensor varieties. In practice, low-rank tensor optimization suffers from the difficulty of choosing a reliable rank parameter. To this end, we incorporate the established geometry and propose a Tucker rank-adaptive method that is capable of identifying an appropriate rank during iterations while the convergence is also guaranteed. Numerical experiments on tensor completion with synthetic and real-world datasets reveal that the proposed methods are in favor of recovering performance over other state-of-the-art methods. Moreover, the rank-adaptive method performs the best across various rank parameter selections and is indeed able to find an appropriate rank.
We consider Maxwell eigenvalue problems on uncertain shapes with perfectly conducting TESLA cavities being the driving example. Due to the shape uncertainty, the resulting eigenvalues and eigenmodes are also uncertain and it is well known that the eigenvalues may exhibit crossings or bifurcations under perturbation. We discuss how the shape uncertainties can be modelled using the domain mapping approach and how the deformation mapping can be expressed as coefficients in Maxwell's equations. Using derivatives of these coefficients and derivatives of the eigenpairs, we follow a perturbation approach to compute approximations of mean and covariance of the eigenpairs. For small perturbations, these approximations are faster and more accurate than Monte Carlo or similar sampling-based strategies. Numerical experiments for a three-dimensional 9-cell TESLA cavity are presented.
The aim of this article is to give lower bounds on the parameters of algebraic geometric error-correcting codes constructed from projective bundles over Deligne--Lusztig surfaces. The methods based on an intensive use of the intersection theory allow us to extend the codes previously constructed from higher-dimensional varieties, as well as those coming from curves. General bounds are obtained for the case of projective bundles of rank $2$ over standard Deligne-Lusztig surfaces, and some explicit examples coming from surfaces of type $A_{2}$ and ${}^{2}A_{4}$ are given.
We give a lower bound of $\Omega(\sqrt n)$ on the unambiguous randomised parity-query complexity of the approximate majority problem -- that is, on the lowest randomised parity-query complexity of any function over $\{0,1\}^n$ whose value is "0" if the Hamming weight of the input is at most n/3, is "1" if the weight is at least 2n/3, and may be arbitrary otherwise.
Comparisons of frequency distributions often invoke the concept of shift to describe directional changes in properties such as the mean. In the present study, we sought to define shift as a property in and of itself. Specifically, we define distributional shift (DS) as the concentration of frequencies away from the discrete class having the greatest value (e.g., the right-most bin of a histogram). We derive a measure of DS using the normalized sum of exponentiated cumulative frequencies. We then define relative distributional shift (RDS) as the difference in DS between two distributions, revealing the magnitude and direction by which one distribution is concentrated to lesser or greater discrete classes relative to another. We find that RDS is highly related to popular measures that, while based on the comparison of frequency distributions, do not explicitly consider shift. While RDS provides a useful complement to other comparative measures, DS allows shift to be quantified as a property of individual distributions, similar in concept to a statistical moment.
The standard mathematical approach to fourth-down decision making in American football is to make the decision that maximizes estimated win probability. Win probability estimates arise from machine learning models fit from historical data. These models, however, are overfit high-variance estimators, exacerbated by the highly correlated nature of football play-by-play data. Thus, it is imperative to knit uncertainty quantification into the fourth-down decision procedure; we do so using bootstrapping. We find that uncertainty in the estimated optimal fourth-down decision is far greater than that currently expressed by sports analysts in popular sports media. Our contribution is a major advance in fourth-down strategic decision making: far fewer fourth-down decisions are as obvious as analysts claim.
Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.
Suitable discretizations through tensor product formulas of popular multidimensional operators (diffusion or diffusion--advection, for instance) lead to matrices with $d$-dimensional Kronecker sum structure. For evolutionary Partial Differential Equations containing such operators and integrated in time with exponential integrators, it is then of paramount importance to efficiently approximate the actions of $\varphi$-functions of the arising matrices. In this work, we show how to produce directional split approximations of third order with respect to the time step size. They conveniently employ tensor-matrix products (the so-called $\mu$-mode product and related Tucker operator, realized in practice with high performance level 3 BLAS), and allow for the effective usage of exponential Runge--Kutta integrators up to order three. The technique can also be efficiently implemented on modern computer hardware such as Graphic Processing Units. The approach has been successfully tested against state-of-the-art techniques on two well-known physical models that lead to Turing patterns, namely the 2D Schnakenberg and the 3D FitzHugh--Nagumo systems, on different architectures.
Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.
Semivariance is a measure of the dispersion of all observations that fall above the mean or target value of a random variable and it plays an important role in life-length, actuarial and income studies. In this paper, we develop a new non-parametric test for equality of upper semi-variance. We use the U-statistic theory to derive the test statistic and then study the asymptotic properties of the test statistic. We also develop a jackknife empirical likelihood (JEL) ratio test for equality of upper Semivariance. Extensive Monte Carlo simulation studies are carried out to validate the performance of the proposed JEL-based test. We illustrate the test procedure using real data.
Recent studies on reservoir computing essentially involve a high dimensional dynamical system as the reservoir, which transforms and stores the input as a higher dimensional state, for temporal and nontemporal data processing. We demonstrate here a method to predict temporal and nontemporal tasks by constructing virtual nodes as constituting a reservoir in reservoir computing using a nonlinear map, namely logistic map, and a simple finite trigonometric series. We predict three nonlinear systems, namely Lorenz, R\"ossler, and Hindmarsh-Rose, for temporal tasks and a seventh order polynomial for nontemporal tasks with great accuracy. Also, the prediction is made in the presence of noise and found to closely agree with the target. Remarkably, the logistic map performs well and predicts close to the actual or target values. The low values of the root mean square error confirm the accuracy of this method in terms of efficiency. Our approach removes the necessity of continuous dynamical systems for constructing the reservoir in reservoir computing. Moreover, the accurate prediction for the three different nonlinear systems suggests that this method can be considered a general one and can be applied to predict many systems. Finally, we show that the method also accurately anticipates the time series for the future (self prediction).