Commercial organisations are holding and processing an ever-increasing amount of personal data. Policies and laws are continually changing to require these companies to be more transparent regarding the collection, storage, processing and sharing of this data. This paper reports our work of taking Booking.com as a case study to visualise personal data flows extracted from their privacy policy. By showcasing how the company shares its consumers' personal data, we raise questions and extend discussions on the challenges and limitations of using privacy policies to inform online users about the true scale and the landscape of personal data flows. This case study can inform us about future research on more data flow-oriented privacy policy analysis and on the construction of a more comprehensive ontology on personal data flows in complicated business ecosystems.
HTTP-based Trojan is extremely threatening, and it is difficult to be effectively detected because of its concealment and confusion. Previous detection methods usually are with poor generalization ability due to outdated datasets and reliance on manual feature extraction, which makes these methods always perform well under their private dataset, but poorly or even fail to work in real network environment. In this paper, we propose an HTTP-based Trojan detection model via the Hierarchical Spatio-Temporal Features of traffics (HSTF-Model) based on the formalized description of traffic spatio-temporal behavior from both packet level and flow level. In this model, we employ Convolutional Neural Network (CNN) to extract spatial information and Long Short-Term Memory (LSTM) to extract temporal information. In addition, we present a dataset consisting of Benign and Trojan HTTP Traffic (BTHT-2018). Experimental results show that our model can guarantee high accuracy (the F1 of 98.62%-99.81% and the FPR of 0.34%-0.02% in BTHT-2018). More importantly, our model has a huge advantage over other related methods in generalization ability. HSTF-Model trained with BTHT-2018 can reach the F1 of 93.51% on the public dataset ISCX-2012, which is 20+% better than the best of related machine learning methods.
We consider the problem of specifying and proving the security of non-trivial, concurrent programs that intentionally leak information. We present a method that decomposes the problem into (a) proving that the program only leaks information it has declassified via assume annotations already widely used in deductive program verification; and (b) auditing the declassifications against a declarative security policy. We show how condition (a) can be enforced by an extension of the existing program logic SecCSL, and how (b) can be checked by proving a set of simple entailments. Part of the challenge is to define respective semantic soundness criteria and to formally connect these to the logic rules and policy audit. We support our methodology in an auto-active program verifier, which we apply to verify the implementations of various case study programs against a range of declassification policies.
Online health communities (OHCs) are forums where patients with similar conditions communicate their experiences and provide moral support. Social support in OHCs plays a crucial role in easing and rehabilitating patients. However, many time-sensitive questions from patients often remain unanswered due to the multitude of threads and the random nature of patient visits in OHCs. To address this issue, it is imperative to propose a recommender system that assists solution seekers in finding appropriate problem helpers. Nevertheless, developing a recommendation algorithm to enhance social support in OHCs remains an under-explored area. Traditional recommender systems cannot be directly adapted due to the following obstacles. First, unlike user-item links in traditional recommender systems, it is hard to model the social support behind helper-seeker links in OHCs since they are formed based on various heterogeneous reasons. Second, it is difficult to distinguish the impact of historical activities in characterizing patients. Third, it is significantly challenging to ensure that the recommended helpers possess sufficient expertise to assist the seekers. To tackle the aforementioned challenges, we develop a Monotonically regularIzed diseNTangled Variational Autoencoders (MINT) model to strengthen social support in OHCs.
Learning causal effects from data is a fundamental and well-studied problem across science, especially when the cause-effect relationship is static in nature. However, causal effect is less explored when there are dynamical dependencies, i.e., when dependencies exist between entities across time. Identifying dynamic causal effects from time-series observations is computationally expensive when compared to the static scenario. We demonstrate that the computational complexity of recovering the causation structure for the vector auto-regressive (VAR) model is $O(Tn^3N^2)$, where $n$ is the number of nodes, $T$ is the number of samples, and $N$ is the largest time-lag in the dependency between entities. We report a method, with a reduced complexity of $O(Tn^3 \log N)$, to recover the causation structure to obtain frequency-domain (FD) representations of time-series. Since FFT accumulates all the time dependencies on every frequency, causal inference can be performed efficiently by considering the state variables as random variables at any given frequency. We additionally show that, for systems with interactions that are LTI, do-calculus machinery can be realized in the FD resulting in versions of the classical single-door (with cycles), front and backdoor criteria. We demonstrate, for a large class of problems, graph reconstruction using multivariate Wiener projections results in a significant computational advantage with $O(n)$ complexity over reconstruction algorithms such as the PC algorithm which has $O(n^q)$ complexity, where $q$ is the maximum neighborhood size. This advantage accrues due to some remarkable properties of the phase response of the frequency-dependent Wiener coefficients which is not present in any time-domain approach.
Instrumental variables regression is a tool that is commonly used in the analysis of observational data. The instrumental variables are used to make causal inference about the effect of a certain exposure in the presence of unmeasured confounders. A valid instrumental variable is a variable that is associated with the exposure, affects the outcome only through the exposure (exclusion criterion), and is not confounded with the outcome (exogeneity). These assumptions are generally untestable and rely on subject-matter knowledge. Therefore, a sensitivity analysis is desirable to assess the impact of assumptions violation on the estimated parameters. In this paper, we propose and demonstrate a new method of sensitivity analysis for G-estimators in causal linear and non-linear models. We introduce two novel aspects of sensitivity analysis in instrumental variables studies. The first is a single sensitivity parameter that captures violations of exclusion and exogeneity assumptions. The second is an application of the method to non-linear models. The introduced framework is theoretically justified and is illustrated via a simulation study. Finally, we illustrate the method by application to real-world data and provide practitioners with guidelines on conducting sensitivity analysis.
Completely randomized experiment is the gold standard for causal inference. When the covariate information for each experimental candidate is available, one typical way is to include them in covariate adjustments for more accurate treatment effect estimation. In this paper, we investigate this problem under the randomization-based framework, i.e., that the covariates and potential outcomes of all experimental candidates are assumed as deterministic quantities and the randomness comes solely from the treatment assignment mechanism. Under this framework, to achieve asymptotically valid inference, existing estimators usually require either (i) that the dimension of covariates $p$ grows at a rate no faster than $O(n^{2 / 3})$ as sample size $n \to \infty$; or (ii) certain sparsity constraints on the linear representations of potential outcomes constructed via possibly high-dimensional covariates. In this paper, we consider the moderately high-dimensional regime where $p$ is allowed to be in the same order of magnitude as $n$. We develop a novel debiased estimator with a corresponding inference procedure and establish its asymptotic normality under mild assumptions. Our estimator is model-free and does not require any sparsity constraint on potential outcome's linear representations. We also discuss its asymptotic efficiency improvements over the unadjusted treatment effect estimator under different dimensionality constraints. Numerical analysis confirms that compared to other regression adjustment based treatment effect estimators, our debiased estimator performs well in moderately high dimensions.
Understanding variable dependence, particularly eliciting their statistical properties given a set of covariates, provides the mathematical foundation in practical operations management such as risk analysis and decision-making given observed circumstances. This article presents an estimation method for modeling the conditional joint distribution of bivariate outcomes based on the distribution regression and factorization methods. This method is considered semiparametric in that it allows for flexible modeling of both the marginal and joint distributions conditional on covariates without imposing global parametric assumptions across the entire distribution. In contrast to existing parametric approaches, our method can accommodate discrete, continuous, or mixed variables, and provides a simple yet effective way to capture distributional dependence structures between bivariate outcomes and covariates. Various simulation results confirm that our method can perform similarly or better in finite samples compared to the alternative methods. In an application to the study of a motor third-party liability insurance portfolio, the proposed method effectively estimates risk measures such as the conditional Value-at-Risk and Expected Shortfall. This result suggests that this semiparametric approach can serve as an alternative in insurance risk management.
Unsupervised person re-identification (Re-ID) attracts increasing attention due to its potential to resolve the scalability problem of supervised Re-ID models. Most existing unsupervised methods adopt an iterative clustering mechanism, where the network was trained based on pseudo labels generated by unsupervised clustering. However, clustering errors are inevitable. To generate high-quality pseudo-labels and mitigate the impact of clustering errors, we propose a novel clustering relationship modeling framework for unsupervised person Re-ID. Specifically, before clustering, the relation between unlabeled images is explored based on a graph correlation learning (GCL) module and the refined features are then used for clustering to generate high-quality pseudo-labels.Thus, GCL adaptively mines the relationship between samples in a mini-batch to reduce the impact of abnormal clustering when training. To train the network more effectively, we further propose a selective contrastive learning (SCL) method with a selective memory bank update policy. Extensive experiments demonstrate that our method shows much better results than most state-of-the-art unsupervised methods on Market1501, DukeMTMC-reID and MSMT17 datasets. We will release the code for model reproduction.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.
With the rise of knowledge graph (KG), question answering over knowledge base (KBQA) has attracted increasing attention in recent years. Despite much research has been conducted on this topic, it is still challenging to apply KBQA technology in industry because business knowledge and real-world questions can be rather complicated. In this paper, we present AliMe-KBQA, a bold attempt to apply KBQA in the E-commerce customer service field. To handle real knowledge and questions, we extend the classic "subject-predicate-object (SPO)" structure with property hierarchy, key-value structure and compound value type (CVT), and enhance traditional KBQA with constraints recognition and reasoning ability. We launch AliMe-KBQA in the Marketing Promotion scenario for merchants during the "Double 11" period in 2018 and other such promotional events afterwards. Online results suggest that AliMe-KBQA is not only able to gain better resolution and improve customer satisfaction, but also becomes the preferred knowledge management method by business knowledge staffs since it offers a more convenient and efficient management experience.