Quality assessment algorithms can be used to estimate the utility of a biometric sample for the purpose of biometric recognition. "Error versus Discard Characteristic" (EDC) plots, and "partial Area Under Curve" (pAUC) values of curves therein, are generally used by researchers to evaluate the predictive performance of such quality assessment algorithms. An EDC curve depends on an error type such as the "False Non Match Rate" (FNMR), a quality assessment algorithm, a biometric recognition system, a set of comparisons each corresponding to a biometric sample pair, and a comparison score threshold corresponding to a starting error. To compute an EDC curve, comparisons are progressively discarded based on the associated samples' lowest quality scores, and the error is computed for the remaining comparisons. Additionally, a discard fraction limit or range must be selected to compute pAUC values, which can then be used to quantitatively rank quality assessment algorithms. This paper discusses and analyses various details for this kind of quality assessment algorithm evaluation, including general EDC properties, interpretability improvements for pAUC values based on a hard lower error limit and a soft upper error limit, the use of relative instead of discrete rankings, stepwise vs. linear curve interpolation, and normalisation of quality scores to a [0, 100] integer range. We also analyse the stability of quantitative quality assessment algorithm rankings based on pAUC values across varying pAUC discard fraction limits and starting errors, concluding that higher pAUC discard fraction limits should be preferred. The analyses are conducted both with synthetic data and with real data for a face image quality assessment scenario, with a focus on general modality-independent conclusions for EDC evaluations.
For a finite group $G$, the size of a minimum generating set of $G$ is denoted by $d(G)$. Given a finite group $G$ and an integer $k$, deciding if $d(G)\leq k$ is known as the minimum generating set (MIN-GEN) problem. A group $G$ of order $n$ has generating set of size $\lceil \log_p n \rceil$ where $p$ is the smallest prime dividing $n=|G|$. This fact is used to design an $n^{\log_p n+O(1)}$-time algorithm for the group isomorphism problem of groups specified by their Cayley tables (attributed to Tarjan by Miller, 1978). The same fact can be used to give an $n^{\log_p n+O(1)}$-time algorithm for the MIN-GEN problem. We show that the MIN-GEN problem can be solved in time $n^{(1/4)\log_p n+O(1)}$ for general groups given by their Cayley tables. This runtime incidentally matches with the runtime of the best known algorithm for the group isomorphism problem. We show that if a group $G$, given by its Cayley table, is the product of simple groups then a minimum generating set of $G$ can be computed in time polynomial in $|G|$. Given groups $G_i$ along with $d(G_i)$ for $i\in [r]$ the problem of computing $d(\Pi_{i\in[r]} G_i)$ is nontrivial. As a consequence of our result for products of simple groups we show that this problem also can be solved in polynomial time for Cayley table representation. For the MIN-GEN problem for permutation groups, to the best of our knowledge, no significantly better algorithm than the brute force algorithm is known. For an input group $G\leq S_n$, the brute force algorithm runs in time $|G|^{O(n)}$ which can be $2^{\Omega(n^2)}$. We show that if $G\leq S_n$ is a primitive permutation group then the MIN-GEN problem can be solved in time quasi-polynomial in $n$. We also design a $\mathrm{DTIME}(2^n)$ algorithm for computing a minimum generating set of permutation groups all of whose non-abelian chief factors have bounded orders.
Communication compression is an essential strategy for alleviating communication overhead by reducing the volume of information exchanged between computing nodes in large-scale distributed stochastic optimization. Although numerous algorithms with convergence guarantees have been obtained, the optimal performance limit under communication compression remains unclear. In this paper, we investigate the performance limit of distributed stochastic optimization algorithms employing communication compression. We focus on two main types of compressors, unbiased and contractive, and address the best-possible convergence rates one can obtain with these compressors. We establish the lower bounds for the convergence rates of distributed stochastic optimization in six different settings, combining strongly-convex, generally-convex, or non-convex functions with unbiased or contractive compressor types. To bridge the gap between lower bounds and existing algorithms' rates, we propose NEOLITHIC, a nearly optimal algorithm with compression that achieves the established lower bounds up to logarithmic factors under mild conditions. Extensive experimental results support our theoretical findings. This work provides insights into the theoretical limitations of existing compressors and motivates further research into fundamentally new compressor properties.
We consider a linear model which can have a large number of explanatory variables, the errors with an asymmetric distribution or some values of the explained variable are missing at random. In order to take in account these several situations, we consider the non parametric empirical likelihood (EL) estimation method. Because a constraint in EL contains an indicator function then a smoothed function instead of the indicator will be considered. Two smoothed expectile maximum EL methods are proposed, one of which will automatically select the explanatory variables. For each of the methods we obtain the convergence rate of the estimators and their asymptotic normality. The smoothed expectile empirical log-likelihood ratio process follow asymptotically a chi-square distribution and moreover the adaptive LASSO smoothed expectile maximum EL estimator satisfies the sparsity property which guarantees the automatic selection of zero model coefficients. In order to implement these methods, we propose four algorithms.
AI systems are not intrinsically neutral and biases trickle in any type of technological tool. In particular when dealing with people, AI algorithms reflect technical errors originating with mislabeled data. As they feed wrong and discriminatory classifications, perpetuating structural racism and marginalization, these systems are not systematically guarded against bias. In this article we consider the problem of bias in AI systems from the point of view of Information Quality dimensions. We illustrate potential improvements of a bias mitigation tool in gender classification errors, referring to two typically difficult contexts: the classification of non-binary individuals and the classification of transgender individuals. The identification of data quality dimensions to implement in bias mitigation tool may help achieve more fairness. Hence, we propose to consider this issue in terms of completeness, consistency, timeliness and reliability, and offer some theoretical results.
The $\textit{von Neumann Computer Architecture}$ has a distinction between computation and memory. In contrast, the brain has an integrated architecture where computation and memory are indistinguishable. Motivated by the architecture of the brain, we propose a model of $\textit{associative computation}$ where memory is defined by a set of vectors in $\mathbb{R}^n$ (that we call $\textit{anchors}$), computation is performed by convergence from an input vector to a nearest neighbor anchor, and the output is a label associated with an anchor. Specifically, in this paper, we study the representation of Boolean functions in the associative computation model, where the inputs are binary vectors and the corresponding outputs are the labels ($0$ or $1$) of the nearest neighbor anchors. The information capacity of a Boolean function in this model is associated with two quantities: $\textit{(i)}$ the number of anchors (called $\textit{Nearest Neighbor (NN) Complexity}$) and $\textit{(ii)}$ the maximal number of bits representing entries of anchors (called $\textit{Resolution}$). We study symmetric Boolean functions and present constructions that have optimal NN complexity and resolution.
Online Controlled Experiments (OCEs) are the gold standard in evaluating the effectiveness of changes to websites. An important type of OCE evaluates different personalization strategies, which present challenges in low test power and lack of full control in group assignment. We argue that getting the right experiment setup -- the allocation of users to treatment/analysis groups -- should take precedence of post-hoc variance reduction techniques in order to enable the scaling of the number of experiments. We present an evaluation framework that, along with a few simple rule of thumbs, allow experimenters to quickly compare which experiment setup will lead to the highest probability of detecting a treatment effect under their particular circumstance.
In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.
Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.
In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed.
User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.