亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Combating disinformation is one of the burning societal crises -- about 67% of the American population believes that disinformation produces a lot of uncertainty, and 10% of them knowingly propagate disinformation. Evidence shows that disinformation can manipulate democratic processes and public opinion, causing disruption in the share market, panic and anxiety in society, and even death during crises. Therefore, disinformation should be identified promptly and, if possible, mitigated. With approximately 3.2 billion images and 720,000 hours of video shared online daily on social media platforms, scalable detection of multimodal disinformation requires efficient fact verification. Despite progress in automatic text-based fact verification (e.g., FEVER, LIAR), the research community lacks substantial effort in multimodal fact verification. To address this gap, we introduce FACTIFY 3M, a dataset of 3 million samples that pushes the boundaries of the domain of fact verification via a multimodal fake news dataset, in addition to offering explainability through the concept of 5W question-answering. Salient features of the dataset include: (i) textual claims, (ii) ChatGPT-generated paraphrased claims, (iii) associated images, (iv) stable diffusion-generated additional images (i.e., visual paraphrases), (v) pixel-level image heatmap to foster image-text explainability of the claim, (vi) 5W QA pairs, and (vii) adversarial fake news stories.

相關內容

Instance segmentation is a fundamental research in computer vision, especially in autonomous driving. However, manual mask annotation for instance segmentation is quite time-consuming and costly. To address this problem, some prior works attempt to apply weakly supervised manner by exploring 2D or 3D boxes. However, no one has ever successfully segmented 2D and 3D instances simultaneously by only using 2D box annotations, which could further reduce the annotation cost by an order of magnitude. Thus, we propose a novel framework called Multimodal Weakly Supervised Instance Segmentation (MWSIS), which incorporates various fine-grained label generation and correction modules for both 2D and 3D modalities to improve the quality of pseudo labels, along with a new multimodal cross-supervision approach, named Consistency Sparse Cross-modal Supervision (CSCS), to reduce the inconsistency of multimodal predictions by response distillation. Particularly, transferring the 3D backbone to downstream tasks not only improves the performance of the 3D detectors, but also outperforms fully supervised instance segmentation with only 5% fully supervised annotations. On the Waymo dataset, the proposed framework demonstrates significant improvements over the baseline, especially achieving 2.59% mAP and 12.75% mAP increases for 2D and 3D instance segmentation tasks, respectively. The code is available at //github.com/jiangxb98/mwsis-plugin.

Efficiently capturing the complex spatiotemporal representations from large-scale unlabeled traffic data remains to be a challenging task. In considering of the dilemma, this work employs the advanced contrastive learning and proposes a novel Spatial-Temporal Synchronous Contextual Contrastive Learning (STS-CCL) model. First, we elaborate the basic and strong augmentation methods for spatiotemporal graph data, which not only perturb the data in terms of graph structure and temporal characteristics, but also employ a learning-based dynamic graph view generator for adaptive augmentation. Second, we introduce a Spatial-Temporal Synchronous Contrastive Module (STS-CM) to simultaneously capture the decent spatial-temporal dependencies and realize graph-level contrasting. To further discriminate node individuals in negative filtering, a Semantic Contextual Contrastive method is designed based on semantic features and spatial heterogeneity, achieving node-level contrastive learning along with negative filtering. Finally, we present a hard mutual-view contrastive training scheme and extend the classic contrastive loss to an integrated objective function, yielding better performance. Extensive experiments and evaluations demonstrate that building a predictor upon STS-CCL contrastive learning model gains superior performance than existing traffic forecasting benchmarks. The proposed STS-CCL is highly suitable for large datasets with only a few labeled data and other spatiotemporal tasks with data scarcity issue.

Mean field games (MFG) and mean field control (MFC) problems have been introduced to study large populations of strategic players. They correspond respectively to non-cooperative or cooperative scenarios, where the aim is to find the Nash equilibrium and social optimum. These frameworks provide approximate solutions to situations with a finite number of players and have found a wide range of applications, from economics to biology and machine learning. In this paper, we study how the players can pass from a non-cooperative to a cooperative regime, and vice versa. The first direction is reminiscent of mechanism design, in which the game's definition is modified so that non-cooperative players reach an outcome similar to a cooperative scenario. The second direction studies how players that are initially cooperative gradually deviate from a social optimum to reach a Nash equilibrium when they decide to optimize their individual cost similar to the free rider phenomenon. To formalize these connections, we introduce two new classes of games which lie between MFG and MFC: $\lambda$-interpolated mean field games, in which the cost of an individual player is a $\lambda$-interpolation of the MFG and the MFC costs, and $p$-partial mean field games, in which a proportion $p$ of the population deviates from the social optimum by playing the game non-cooperatively. We conclude the paper by providing an algorithm for myopic players to learn a $p$-partial mean field equilibrium, and we illustrate it on a stylized model.

The promise of Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions. However, a major challenge is frequent missing data. Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications, and a lack of available datasets has stymied progress. We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks. Our baseline models include a novel transformer-based architecture designed to exploit the structure of pulsative signals. We hope that PulseImpute will enable the ML community to tackle this significant and challenging task.

Large language models (LLMs) have recently transformed both the academic and industrial landscapes due to their remarkable capacity to understand, analyze, and generate texts based on their vast knowledge and reasoning ability. Nevertheless, one major drawback of LLMs is their substantial computational cost for pre-training due to their unprecedented amounts of parameters. The disadvantage is exacerbated when new knowledge frequently needs to be introduced into the pre-trained model. Therefore, it is imperative to develop effective and efficient techniques to update pre-trained LLMs. Traditional methods encode new knowledge in pre-trained LLMs through direct fine-tuning. However, naively re-training LLMs can be computationally intensive and risks degenerating valuable pre-trained knowledge irrelevant to the update in the model. Recently, Knowledge-based Model Editing (KME) has attracted increasing attention, which aims to precisely modify the LLMs to incorporate specific knowledge, without negatively influencing other irrelevant knowledge. In this survey, we aim to provide a comprehensive and in-depth overview of recent advances in the field of KME. We first introduce a general formulation of KME to encompass different KME strategies. Afterward, we provide an innovative taxonomy of KME techniques based on how the new knowledge is introduced into pre-trained LLMs, and investigate existing KME strategies while analyzing key insights, advantages, and limitations of methods from each category. Moreover, representative metrics, datasets, and applications of KME are introduced accordingly. Finally, we provide an in-depth analysis regarding the practicality and remaining challenges of KME and suggest promising research directions for further advancement in this field.

3D simulated environments play a critical role in Embodied AI, but their creation requires expertise and extensive manual effort, restricting their diversity and scope. To mitigate this limitation, we present Holodeck, a system that generates 3D environments to match a user-supplied prompt fully automatedly. Holodeck can generate diverse scenes, e.g., arcades, spas, and museums, adjust the designs for styles, and can capture the semantics of complex queries such as "apartment for a researcher with a cat" and "office of a professor who is a fan of Star Wars". Holodeck leverages a large language model (GPT-4) for common sense knowledge about what the scene might look like and uses a large collection of 3D assets from Objaverse to populate the scene with diverse objects. To address the challenge of positioning objects correctly, we prompt GPT-4 to generate spatial relational constraints between objects and then optimize the layout to satisfy those constraints. Our large-scale human evaluation shows that annotators prefer Holodeck over manually designed procedural baselines in residential scenes and that Holodeck can produce high-quality outputs for diverse scene types. We also demonstrate an exciting application of Holodeck in Embodied AI, training agents to navigate in novel scenes like music rooms and daycares without human-constructed data, which is a significant step forward in developing general-purpose embodied agents.

Automated fact-checking systems verify claims against evidence to predict their veracity. In real-world scenarios, the retrieved evidence may not unambiguously support or refute the claim and yield conflicting but valid interpretations. Existing fact-checking datasets assume that the models developed with them predict a single veracity label for each claim, thus discouraging the handling of such ambiguity. To address this issue we present AmbiFC, a fact-checking dataset with 10k claims derived from real-world information needs. It contains fine-grained evidence annotations of 50k passages from 5k Wikipedia pages. We analyze the disagreements arising from ambiguity when comparing claims against evidence in AmbiFC, observing a strong correlation of annotator disagreement with linguistic phenomena such as underspecification and probabilistic reasoning. We develop models for predicting veracity handling this ambiguity via soft labels and find that a pipeline that learns the label distribution for sentence-level evidence selection and veracity prediction yields the best performance. We compare models trained on different subsets of AmbiFC and show that models trained on the ambiguous instances perform better when faced with the identified linguistic phenomena.

Happiness underlines the intuitive constructs of a specified population based on positive psychological outcomes. It is the cornerstone of the cognitive skills and exploring university student's happiness has been the essence of the researchers lately. In this study, we have analyzed the university student's happiness and its facets using statistical distribution charts; designing research questions. Furthermore, regression analysis, machine learning, and clustering algorithms were applied on the world happiness dataset and university student's dataset for training and testing respectively. Philosophy was the happiest department while Sociology the saddest; average happiness score being 2.8 and 2.44 respectively. Pearson coefficient of correlation was 0.74 for Health. Predicted happiness score was 5.2 and the goodness of model fit was 51%. train and test error being 0.52, 0.47 respectively. On a Confidence Interval(CI) of 5% p-value was least for Campus Environment(CE) and University Reputation(UR) and maximum for Extra-curricular Activities(ECA) and Work Balance(WB) (i.e. 0.184 and 0.228 respectively). RF with Clustering got the highest accuracy(89%) and F score(0.98) and the least error(17.91%), hence turned out to be best for our study

In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.

Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.

北京阿比特科技有限公司