亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Combining ideas coming from Stone duality and Reynolds parametricity, we formulate in a clean and principled way a notion of profinite lambda-term which, we show, generalizes at every type the traditional notion of profinite word coming from automata theory. We start by defining the Stone space of profinite lambda-terms as a projective limit of finite sets of usual lambda-terms, considered modulo a notion of equivalence based on the finite standard model. One main contribution of the paper is to establish that, somewhat surprisingly, the resulting notion of profinite lambda-term coming from Stone duality lives in perfect harmony with the principles of Reynolds parametricity. In addition, we show that the notion of profinite lambda-term is compositional by constructing a cartesian closed category of profinite lambda-terms, and we establish that the embedding from lambda-terms modulo beta-eta-conversion to profinite lambda-terms is faithful using Statman's finite completeness theorem. Finally, we prove that the traditional Church encoding of finite words into lambda-terms can be extended to profinite words, and leads to a homeomorphism between the space of profinite words and the space of profinite lambda-terms of the corresponding Church type.

相關內容

迄(qi)今為止,產品設計師最友(you)好(hao)的交互動(dong)畫軟件。

The prescriptions of our two most prominent strands of decision theory, evidential and causal, differ in a general class of problems known as Newcomb problems. In these, evidential decision theory prescribes choosing a dominated act. Attempts have been made at reconciling the two theories by relying on additional requirements such as ratification (Jeffrey 1983) or "tickles" (Eells 1982). It has been argued that such attempts have failed (Lewis 1981a; Skyrms 1982). More recently, Huttegger (forthcoming) has developed a version of deliberative decision theory that reconciles the prescriptions of the evidentialist and causalist. In this paper, I extend this framework to problems characterised by decision instability, and show that it cannot deliver a resolute answer under a plausible specification of the tickle. I prove that there exists a robust method of determining whether the specification of the tickle matters for all two-state, two-act problems whose payoff tables exhibit some basic mathematical relationships. One upshot is that we have a principled way of knowing ex-ante whether a reconciliation of evidential and causal decision theory is plausible for a wide range of decision problems under this framework. Another upshot is that the tickle approach needs further work to achieve full reconciliation.

Various methods have recently been proposed to estimate causal effects with confidence intervals that are uniformly valid over a set of data generating processes when high-dimensional nuisance models are estimated by post-model-selection or machine learning estimators. These methods typically require that all the confounders are observed to ensure identification of the effects. We contribute by showing how valid semiparametric inference can be obtained in the presence of unobserved confounders and high-dimensional nuisance models. We propose uncertainty intervals which allow for unobserved confounding, and show that the resulting inference is valid when the amount of unobserved confounding is small relative to the sample size; the latter is formalized in terms of convergence rates. Simulation experiments illustrate the finite sample properties of the proposed intervals and investigate an alternative procedure that improves the empirical coverage of the intervals when the amount of unobserved confounding is large. Finally, a case study on the effect of smoking during pregnancy on birth weight is used to illustrate the use of the methods introduced to perform a sensitivity analysis to unobserved confounding.

We consider scalar semilinear elliptic PDEs, where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. To linearize the arising discrete nonlinear problem, we employ a damped Zarantonello iteration, which leads to a linear Poisson-type equation that is symmetric and positive definite. The resulting system is solved by a contractive algebraic solver such as a multigrid method with local smoothing. We formulate a fully adaptive algorithm that equibalances the various error components coming from mesh refinement, iterative linearization, and algebraic solver. We prove that the proposed adaptive iteratively linearized finite element method (AILFEM) guarantees convergence with optimal complexity, where the rates are understood with respect to the overall computational cost (i.e., the computational time). Numerical experiments investigate the involved adaptivity parameters.

In this article, we develop comprehensive frequency domain methods for estimating and inferring the second-order structure of spatial point processes. The main element here is on utilizing the discrete Fourier transform (DFT) of the point pattern and its tapered counterpart. Under second-order stationarity, we show that both the DFTs and the tapered DFTs are asymptotically jointly independent Gaussian even when the DFTs share the same limiting frequencies. Based on these results, we establish an $\alpha$-mixing central limit theorem for a statistic formulated as a quadratic form of the tapered DFT. As applications, we derive the asymptotic distribution of the kernel spectral density estimator and establish a frequency domain inferential method for parametric stationary point processes. For the latter, the resulting model parameter estimator is computationally tractable and yields meaningful interpretations even in the case of model misspecification. We investigate the finite sample performance of our estimator through simulations, considering scenarios of both correctly specified and misspecified models. Furthermore, we extend our proposed DFT-based frequency domain methods to a class of non-stationary spatial point processes.

In this paper, we introduce Segmentation-Driven Deformation Multi-View Stereo (SD-MVS), a method that can effectively tackle challenges in 3D reconstruction of textureless areas. We are the first to adopt the Segment Anything Model (SAM) to distinguish semantic instances in scenes and further leverage these constraints for pixelwise patch deformation on both matching cost and propagation. Concurrently, we propose a unique refinement strategy that combines spherical coordinates and gradient descent on normals and pixelwise search interval on depths, significantly improving the completeness of reconstructed 3D model. Furthermore, we adopt the Expectation-Maximization (EM) algorithm to alternately optimize the aggregate matching cost and hyperparameters, effectively mitigating the problem of parameters being excessively dependent on empirical tuning. Evaluations on the ETH3D high-resolution multi-view stereo benchmark and the Tanks and Temples dataset demonstrate that our method can achieve state-of-the-art results with less time consumption.

We present a comprehensive analysis of the implications of artificial latency in the Proposer-Builder Separation framework on the Ethereum network. Focusing on the MEV-Boost auction system, we analyze how strategic latency manipulation affects Maximum Extractable Value yields and network integrity. Our findings reveal both increased profitability for node operators and significant systemic challenges, including heightened network inefficiencies and centralization risks. We empirically validates these insights with a pilot that Chorus One has been operating on Ethereum mainnet. We demonstrate the nuanced effects of latency on bid selection and validator dynamics. Ultimately, this research underscores the need for balanced strategies that optimize Maximum Extractable Value capture while preserving the Ethereum network's decentralization ethos.

In recent years a great deal of attention has been paid to discretizations of the incompressible Stokes equations that exactly preserve the incompressibility constraint. These are of substantial interest because these discretizations are pressure-robust, i.e. the error estimates for the velocity do not depend on the error in the pressure. Similar considerations arise in nearly incompressible linear elastic solids. Conforming discretizations with this property are now well understood in two dimensions, but remain poorly understood in three dimensions. In this work we state two conjectures on this subject. The first is that the Scott-Vogelius element pair is inf-sup stable on uniform meshes for velocity degree $k \ge 4$; the best result available in the literature is for $k \ge 6$. The second is that there exists a stable space decomposition of the kernel of the divergence for $k \ge 5$. We present numerical evidence supporting our conjectures.

This paper proposes a new approach to fit a linear regression for symbolic internal-valued variables, which improves both the Center Method suggested by Billard and Diday in \cite{BillardDiday2000} and the Center and Range Method suggested by Lima-Neto, E.A. and De Carvalho, F.A.T. in \cite{Lima2008, Lima2010}. Just in the Centers Method and the Center and Range Method, the new methods proposed fit the linear regression model on the midpoints and in the half of the length of the intervals as an additional variable (ranges) assumed by the predictor variables in the training data set, but to make these fitments in the regression models, the methods Ridge Regression, Lasso, and Elastic Net proposed by Tibshirani, R. Hastie, T., and Zou H in \cite{Tib1996, HastieZou2005} are used. The prediction of the lower and upper of the interval response (dependent) variable is carried out from their midpoints and ranges, which are estimated from the linear regression models with shrinkage generated in the midpoints and the ranges of the interval-valued predictors. Methods presented in this document are applied to three real data sets cardiologic interval data set, Prostate interval data set and US Murder interval data set to then compare their performance and facility of interpretation regarding the Center Method and the Center and Range Method. For this evaluation, the root-mean-squared error and the correlation coefficient are used. Besides, the reader may use all the methods presented herein and verify the results using the {\tt RSDA} package written in {\tt R} language, that can be downloaded and installed directly from {\tt CRAN} \cite{Rod2014}.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

北京阿比特科技有限公司