亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Image segmentation in total knee arthroplasty is crucial for precise preoperative planning and accurate implant positioning, leading to improved surgical outcomes and patient satisfaction. The biggest challenges of image segmentation in total knee arthroplasty include accurately delineating complex anatomical structures, dealing with image artifacts and noise, and developing robust algorithms that can handle anatomical variations and pathologies commonly encountered in patients. The potential of using machine learning for image segmentation in total knee arthroplasty lies in its ability to improve segmentation accuracy, automate the process, and provide real-time assistance to surgeons, leading to enhanced surgical planning, implant placement, and patient outcomes. This paper proposes a methodology to use deep learning for robust and real-time total knee arthroplasty image segmentation. The deep learning model, trained on a large dataset, demonstrates outstanding performance in accurately segmenting both the implanted femur and tibia, achieving an impressive mean-Average-Precision (mAP) of 88.83 when compared to the ground truth while also achieving a real-time segmented speed of 20 frames per second (fps). We have introduced a novel methodology for segmenting implanted knee fluoroscopic or x-ray images that showcases remarkable levels of accuracy and speed, paving the way for various potential extended applications.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as shortcut bias, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs) for shortcut bias mitigation. We show that at particular training intervals, DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features. We leverage this crucial property to generate synthetic counterfactuals to increase model diversity via ensemble disagreement. We show that DPM-guided diversification is sufficient to remove dependence on primary shortcut cues, without a need for additional supervised signals. We further empirically quantify its efficacy on several diversification objectives, and finally show improved generalization and diversification performance on par with prior work that relies on auxiliary data collection.

Accurate 3D kinematics estimation of human body is crucial in various applications for human health and mobility, such as rehabilitation, injury prevention, and diagnosis, as it helps to understand the biomechanical loading experienced during movement. Conventional marker-based motion capture is expensive in terms of financial investment, time, and the expertise required. Moreover, due to the scarcity of datasets with accurate annotations, existing markerless motion capture methods suffer from challenges including unreliable 2D keypoint detection, limited anatomic accuracy, and low generalization capability. In this work, we propose a novel biomechanics-aware network that directly outputs 3D kinematics from two input views with consideration of biomechanical prior and spatio-temporal information. To train the model, we create synthetic dataset ODAH with accurate kinematics annotations generated by aligning the body mesh from the SMPL-X model and a full-body OpenSim skeletal model. Our extensive experiments demonstrate that the proposed approach, only trained on synthetic data, outperforms previous state-of-the-art methods when evaluated across multiple datasets, revealing a promising direction for enhancing video-based human motion capture

We present AlloyInEcore, a tool for specifying metamodels with their static semantics to facilitate automated, formal reasoning on models. Software development projects require that software systems be specified in various models (e.g., requirements models, architecture models, test models, and source code). It is crucial to reason about those models to ensure the correct and complete system specifications. AlloyInEcore allows the user to specify metamodels with their static semantics, while, using the semantics, it automatically detects inconsistent models, and completes partial models. It has been evaluated on three industrial case studies in the automotive domain (//modelwriter.github.io/AlloyInEcore/).

Although substance use, such as alcohol consumption, is known to be associated with cognitive decline during ageing, its direct influence on the central nervous system remains unclear. In this study, we aim to investigate the potential influence of alcohol intake frequency on accelerated brain ageing by estimating the mean potential brain-age gap (BAG) index, the difference between brain age and actual age, under different alcohol intake frequencies in a large UK Biobank (UKB) cohort with extensive phenomic data reflecting a comprehensive life-style profile. We face two major challenges: (1) a large number of phenomic variables as potential confounders and (2) a small proportion of participants with complete phenomic data. To address these challenges, we first develop a new ensemble learning framework to establish robust estimation of mean potential outcome in the presence of many confounders. We then construct a data integration step to borrow information from UKB participants with incomplete phenomic data to improve efficiency. Our analysis results reveal that daily intake or even a few times a week may have significant effects on accelerating brain ageing. Moreover, extensive numerical studies demonstrate the superiority of our method over competing methods, in terms of smaller estimation bias and variability.

Incident Response Planning (IRP) is essential for effective cybersecurity management, requiring detailed documentation (or playbooks) to guide security personnel during incidents. Yet, creating comprehensive IRPs is often hindered by challenges such as complex systems, high turnover rates, and legacy technologies lacking documentation. This paper argues that, despite these obstacles, the development, review, and refinement of IRPs can be significantly enhanced through the utilization of Large Language Models (LLMs) like ChatGPT. By leveraging LLMs for tasks such as drafting initial plans, suggesting best practices, and identifying documentation gaps, organizations can overcome resource constraints and improve their readiness for cybersecurity incidents. We discuss the potential of LLMs to streamline IRP processes, while also considering the limitations and the need for human oversight in ensuring the accuracy and relevance of generated content. Our findings contribute to the cybersecurity field by demonstrating a novel approach to enhancing IRP with AI technologies, offering practical insights for organizations seeking to bolster their incident response capabilities.

Rapidly Exploring Random Tree (RRT) algorithms are popular for sampling-based planning for nonholonomic vehicles in unstructured environments. However, we argue that previous work does not illuminate the challenges when employing such algorithms. Thus, in this article, we do a first comparison study of the performance of the following previously proposed RRT algorithm variants; Potential-Quick RRT* (PQ-RRT*), Informed RRT* (IRRT*), RRT* and RRT, for single-query nonholonomic motion planning over several cases in the unstructured maritime environment. The practicalities of employing such algorithms in the maritime domain are also discussed. On the side, we contend that these algorithms offer value not only for Collision Avoidance Systems (CAS) trajectory planning, but also for the verification of CAS through vessel behavior generation. Naturally, optimal RRT variants yield more distance-optimal paths at the cost of increased computational time due to the tree wiring process with nearest neighbor consideration. PQ-RRT* achieves marginally better results than IRRT* and RRT*, at the cost of higher tuning complexity and increased wiring time. Based on the results, we argue that for time-critical applications the considered RRT algorithms are, as stand-alone planners, more suitable for use in smaller problems or problems with low obstacle congestion ratio. This is attributed to the curse of dimensionality, and trade-off with available memory and computational resources.

Understanding the pivotal role of oxygen-containing organic compounds in serving as an energy source for living organisms and contributing to protein formation is crucial in the field of biochemistry. This study addresses the challenge of comprehending protein-protein interactions (PPI) and developing predicitive models for proteins and organic compounds, with a specific focus on quantifying their binding affinity. Here, we introduce the active Bayesian Committee Machine (BCM) potential, specifically designed to predict oxygen-containing organic compounds within eight groups of CHO. The BCM potential adopts a committee-based approach to tackle scalability issues associated with kernel regressors, particularly when dealing with large datasets. Its adaptable structure allows for efficient and cost-effective expansion, maintaing both transferability and scalability. Through systematic benchmarking, we position the sparse BCM potential as a promising contender in the pursuit of a universal machine learning potential.

With the explosive growth of medical data and the rapid development of artificial intelligence technology, precision medicine has emerged as a key to enhancing the quality and efficiency of healthcare services. In this context, Large Language Models (LLMs) play an increasingly vital role in medical knowledge acquisition and question-answering systems. To further improve the performance of these systems in the medical domain, we introduce an innovative method that jointly trains an Information Retrieval (IR) system and an LLM during the fine-tuning phase. This approach, which we call Joint Medical LLM and Retrieval Training (JMLR), is designed to overcome the challenges faced by traditional models in handling medical question-answering tasks. By employing a synchronized training mechanism, JMLR reduces the demand for computational resources and enhances the model's ability to leverage medical knowledge for reasoning and answering questions. Our experimental results demonstrate that JMLR-13B (81.2% on Amboos, 61.3% on MedQA) outperforms models using conventional pre-training and fine-tuning Meditron-70B (76.4% on AMBOSS, 60.3% on MedQA). For models of the same 7B scale, JMLR-7B(68.7% on Amboos, 51.7% on MedQA) significantly outperforms other public models (Meditron-7B: 50.1%, 47.9%), proving its superiority in terms of cost (our training time: 37 hours, traditional method: 144 hours), efficiency, and effectiveness in medical question-answering tasks. Through this work, we provide a new and efficient knowledge enhancement tool for healthcare, demonstrating the great potential of integrating IR and LLM training in precision medical information retrieval and question-answering systems.

Musculoskeletal diseases and cognitive impairments in patients lead to difficulties in movement as well as negative effects on their psychological health. Clinical gait analysis, a vital tool for early diagnosis and treatment, traditionally relies on expensive optical motion capture systems. Recent advances in computer vision and deep learning have opened the door to more accessible and cost-effective alternatives. This paper introduces a novel spatio-temporal Transformer network to estimate critical gait parameters from RGB videos captured by a single-view camera. Empirical evaluations on a public dataset of cerebral palsy patients indicate that the proposed framework surpasses current state-of-the-art approaches and show significant improvements in predicting general gait parameters (including Walking Speed, Gait Deviation Index - GDI, and Knee Flexion Angle at Maximum Extension), while utilizing fewer parameters and alleviating the need for manual feature extraction.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

北京阿比特科技有限公司