Understanding the pivotal role of oxygen-containing organic compounds in serving as an energy source for living organisms and contributing to protein formation is crucial in the field of biochemistry. This study addresses the challenge of comprehending protein-protein interactions (PPI) and developing predicitive models for proteins and organic compounds, with a specific focus on quantifying their binding affinity. Here, we introduce the active Bayesian Committee Machine (BCM) potential, specifically designed to predict oxygen-containing organic compounds within eight groups of CHO. The BCM potential adopts a committee-based approach to tackle scalability issues associated with kernel regressors, particularly when dealing with large datasets. Its adaptable structure allows for efficient and cost-effective expansion, maintaing both transferability and scalability. Through systematic benchmarking, we position the sparse BCM potential as a promising contender in the pursuit of a universal machine learning potential.
Estimating the joint effect of a multivariate, continuous exposure is crucial, particularly in environmental health where interest lies in simultaneously evaluating the impact of multiple environmental pollutants on health. We develop novel methodology that addresses two key issues for estimation of treatment effects of multivariate, continuous exposures. We use nonparametric Bayesian methodology that is flexible to ensure our approach can capture a wide range of data generating processes. Additionally, we allow the effect of the exposures to be heterogeneous with respect to covariates. Treatment effect heterogeneity has not been well explored in the causal inference literature for multivariate, continuous exposures, and therefore we introduce novel estimands that summarize the nature and extent of the heterogeneity, and propose estimation procedures for new estimands related to treatment effect heterogeneity. We provide theoretical support for the proposed models in the form of posterior contraction rates and show that it works well in simulated examples both with and without heterogeneity. We apply our approach to a study of the health effects of simultaneous exposure to the components of PM$_{2.5}$ and find that the negative health effects of exposure to these environmental pollutants is exacerbated by low socioeconomic status and age.
Learning the skill of human bimanual grasping can extend the capabilities of robotic systems when grasping large or heavy objects. However, it requires a much larger search space for grasp points than single-hand grasping and numerous bimanual grasping annotations for network learning, making both data-driven or analytical grasping methods inefficient and insufficient. We propose a framework for bimanual grasp saliency learning that aims to predict the contact points for bimanual grasping based on existing human single-handed grasping data. We learn saliency corresponding vectors through minimal bimanual contact annotations that establishes correspondences between grasp positions of both hands, capable of eliminating the need for training a large-scale bimanual grasp dataset. The existing single-handed grasp saliency value serves as the initial value for bimanual grasp saliency, and we learn a saliency adjusted score that adds the initial value to obtain the final bimanual grasp saliency value, capable of predicting preferred bimanual grasp positions from single-handed grasp saliency. We also introduce a physics-balance loss function and a physics-aware refinement module that enables physical grasp balance, capable of enhancing the generalization of unknown objects. Comprehensive experiments in simulation and comparisons on dexterous grippers have demonstrated that our method can achieve balanced bimanual grasping effectively.
In the field of natural language processing (NLP), continuous vector representations are crucial for capturing the semantic meanings of individual words. Yet, when it comes to the representations of sets of words, the conventional vector-based approaches often struggle with expressiveness and lack the essential set operations such as union, intersection, and complement. Inspired by quantum logic, we realize the representation of word sets and corresponding set operations within pre-trained word embedding spaces. By grounding our approach in the linear subspaces, we enable efficient computation of various set operations and facilitate the soft computation of membership functions within continuous spaces. Moreover, we allow for the computation of the F-score directly within word vectors, thereby establishing a direct link to the assessment of sentence similarity. In experiments with widely-used pre-trained embeddings and benchmarks, we show that our subspace-based set operations consistently outperform vector-based ones in both sentence similarity and set retrieval tasks.
With the aim of further enabling the exploitation of intentional impacts in robotic manipulation, a control framework is presented that directly tackles the challenges posed by tracking control of robotic manipulators that are tasked to perform nominally simultaneous impacts. This framework is an extension of the reference spreading control framework, in which overlapping ante- and post-impact references that are consistent with impact dynamics are defined. In this work, such a reference is constructed starting from a teleoperation-based approach. By using the corresponding ante- and post-impact control modes in the scope of a quadratic programming control approach, peaking of the velocity error and control inputs due to impacts is avoided while maintaining high tracking performance. With the inclusion of a novel interim mode, we aim to also avoid input peaks and steps when uncertainty in the environment causes a series of unplanned single impacts to occur rather than the planned simultaneous impact. This work in particular presents for the first time an experimental evaluation of reference spreading control on a robotic setup, showcasing its robustness against uncertainty in the environment compared to three baseline control approaches.
Neuromorphic computing leverages the sparsity of temporal data to reduce processing energy by activating a small subset of neurons and synapses at each time step. When deployed for split computing in edge-based systems, remote neuromorphic processing units (NPUs) can reduce the communication power budget by communicating asynchronously using sparse impulse radio (IR) waveforms. This way, the input signal sparsity translates directly into energy savings both in terms of computation and communication. However, with IR transmission, the main contributor to the overall energy consumption remains the power required to maintain the main radio on. This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs. A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making. To address this problem, as a second contribution, this work proposes a novel methodology that leverages the use of a digital twin (DT), i.e., a simulator, of the physical system, coupled with a sequential statistical testing approach known as Learn Then Test (LTT) to provide theoretical reliability guarantees. The proposed DT-LTT methodology is broadly applicable to other design problems, and is showcased here for neuromorphic communications. Experimental results validate the design and the analysis, confirming the theoretical reliability guarantees and illustrating trade-offs among reliability, energy consumption, and informativeness of the decisions.
We study the behavior of optimal ridge regularization and optimal ridge risk for out-of-distribution prediction, where the test distribution deviates arbitrarily from the train distribution. We establish general conditions that determine the sign of the optimal regularization level under covariate and regression shifts. These conditions capture the alignment between the covariance and signal structures in the train and test data and reveal stark differences compared to the in-distribution setting. For example, a negative regularization level can be optimal under covariate shift or regression shift, even when the training features are isotropic or the design is underparameterized. Furthermore, we prove that the optimally-tuned risk is monotonic in the data aspect ratio, even in the out-of-distribution setting and when optimizing over negative regularization levels. In general, our results do not make any modeling assumptions for the train or the test distributions, except for moment bounds, and allow for arbitrary shifts and the widest possible range of (negative) regularization levels.
Aerial vehicles equipped with manipulators can serve contact-based industrial applications, where fundamental tasks like drilling and grinding often necessitate aerial platforms to handle heavy tools. Industrial environments often involve non-horizontal surfaces. Existing aerial manipulation platforms based on multirotors typically feature a fixed CoM (Center of Mass) within the rotor-defined area, leading to a considerable moment arm between the EE (End-Effector) tip and the CoM for operations on such surfaces. Carrying heavy tools at the EE tip of the manipulator with an extended moment arm can lead to system instability and potential damage to the servo actuators used in the manipulator. To tackle this issue, we present a novel aerial vehicle tailored for handling heavy tools on non-horizontal surfaces. In this work, we provide the platform's system design, modeling, and control strategies. This platform can carry heavy manipulators within the rotor-defined area during free flight. During interactions, the manipulator can shift towards the work surface outside the rotor-defined area, resulting in a displaced CoM location with a significantly shorter moment arm. Furthermore, we propose a method for automatically determining the manipulator's position to reach the maximum CoM displacement towards the work surface. Our proposed concepts are validated through simulations that closely capture the developed physical prototype of the platform.
With the universal adoption of machine learning in healthcare, the potential for the automation of societal biases to further exacerbate health disparities poses a significant risk. We explore algorithmic fairness from the perspective of feature selection. Traditional feature selection methods identify features for better decision making by removing resource-intensive, correlated, or non-relevant features but overlook how these factors may differ across subgroups. To counter these issues, we evaluate a fair feature selection method that considers equal importance to all demographic groups. We jointly considered a fairness metric and an error metric within the feature selection process to ensure a balance between minimizing both bias and global classification error. We tested our approach on three publicly available healthcare datasets. On all three datasets, we observed improvements in fairness metrics coupled with a minimal degradation of balanced accuracy. Our approach addresses both distributive and procedural fairness within the fair machine learning context.
To meet the urgent requirements for the climate change mitigation, several proactive measures of energy efficiency have been implemented in maritime industry. Many of these practices depend highly on the onboard data of vessel's operation and environmental conditions. In this paper, a high resolution onboard data from passenger vessels in short-sea shipping (SSS) have been collected and preprocessed. We first investigated the available data to deploy it effectively to model the physics of the vessel, and hence the vessel performance. Since in SSS, the weather measurements and forecasts might have not been in temporal and spatial resolutions that accurately representing the actual environmental conditions. Then, We proposed a data-driven modeling approach for vessel energy efficiency. This approach addresses the challenges of data representation and energy modeling by combining and aggregating data from multiple sources and seamlessly integrates explainable artificial intelligence (XAI) to attain clear insights about the energy efficiency for a vessel in SSS. After that, the developed model of energy efficiency has been utilized in developing a framework for optimizing the vessel voyage to minimize the fuel consumption and meeting the constraint of arrival time. Moreover, we developed a spatial clustering approach for labeling the vessel paths to detect the paths for vessels with operating routes of repeatable and semi-repeatable paths.
Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.