亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We adopt the integral definition of the fractional Laplace operator and analyze solution techniques for fractional, semilinear, and elliptic optimal control problems posed on Lipschitz polytopes. We consider two strategies of discretization: a semidiscrete scheme where the admissible control set is not discretized and a fully discrete scheme where such a set is discretized with piecewise constant functions. As an instrumental step, we derive error estimates for finite element discretizations of fractional semilinear elliptic partial differential equations (PDEs) on quasi-uniform and graded meshes. With these estimates at hand, we derive error bounds for the semidiscrete scheme and improve the ones that are available in the literature for the fully discrete scheme.

相關內容

The paper analyses properties of a large class of "path-based" Data Envelopment Analysis models through a unifying general scheme. The scheme includes the well-known oriented radial models, the hyperbolic distance function model, the directional distance function models, and even permits their generalisations. The modelling is not constrained to non-negative data and is flexible enough to accommodate variants of standard models over arbitrary data. Mathematical tools developed in the paper allow systematic analysis of the models from the point of view of ten desirable properties. It is shown that some of the properties are satisfied (resp., fail) for all models in the general scheme, while others have a more nuanced behaviour and must be assessed individually in each model. Our results can help researchers and practitioners navigate among the different models and apply the models to mixed data.

Classification trees continue to be widely adopted in machine learning applications due to their inherently interpretable nature and scalability. We propose a rolling subtree lookahead algorithm that combines the relative scalability of the myopic approaches with the foresight of the optimal approaches in constructing trees. The limited foresight embedded in our algorithm mitigates the learning pathology observed in optimal approaches. At the heart of our algorithm lies a novel two-depth optimal binary classification tree formulation flexible to handle any loss function. We show that the feasible region of this formulation is an integral polyhedron, yielding the LP relaxation solution optimal. Through extensive computational analyses, we demonstrate that our approach outperforms optimal and myopic approaches in 808 out of 1330 problem instances, improving the out-of-sample accuracy by up to 23.6% and 14.4%, respectively.

Under-approximations of reachable sets and tubes have been receiving growing research attention due to their important roles in control synthesis and verification. Available under-approximation methods applicable to continuous-time linear systems typically assume the ability to compute transition matrices and their integrals exactly, which is not feasible in general, and/or suffer from high computational costs. In this note, we attempt to overcome these drawbacks for a class of linear time-invariant (LTI) systems, where we propose a novel method to under-approximate finite-time forward reachable sets and tubes, utilizing approximations of the matrix exponential and its integral. In particular, we consider the class of continuous-time LTI systems with an identity input matrix and initial and input values belonging to full dimensional sets that are affine transformations of closed unit balls. The proposed method yields computationally efficient under-approximations of reachable sets and tubes, when implemented using zonotopes, with first-order convergence guarantees in the sense of the Hausdorff distance. To illustrate its performance, we implement our approach in three numerical examples, where linear systems of dimensions ranging between 2 and 200 are considered.

We present a stochastic method for efficiently computing the solution of time-fractional partial differential equations (fPDEs) that model anomalous diffusion problems of the subdiffusive type. After discretizing the fPDE in space, the ensuing system of fractional linear equations is solved resorting to a Monte Carlo evaluation of the corresponding Mittag-Leffler matrix function. This is accomplished through the approximation of the expected value of a suitable multiplicative functional of a stochastic process, which consists of a Markov chain whose sojourn times in every state are Mittag-Leffler distributed. The resulting algorithm is able to calculate the solution at conveniently chosen points in the domain with high efficiency. In addition, we present how to generalize this algorithm in order to compute the complete solution. For several large-scale numerical problems, our method showed remarkable performance in both shared-memory and distributed-memory systems, achieving nearly perfect scalability up to 16,384 CPU cores.

This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in space of partial differential equations. Since these differential equations exhibit pronounced or highly) oscillatory behavior, standard numerical methods are known to perform poorly. Our approach consists in directly discretizing the problem by means of Gautschi-type integrators based on $\operatorname{sinc}$ matrix functions. The novelty contained here is that of using a suitable rational approximation formula for the $\operatorname{sinc}$ matrix function to apply a rational Krylov-like approximation method with suitable choices of poles. In particular, we discuss the application of the whole strategy to a finite element discretization of the wave equation.

We study generalized games with full row rank equality constraints and we provide a strikingly simple proof of strong monotonicity of the associated KKT operator. This allows us to show linear convergence to a variational equilibrium of the resulting primal-dual pseudo-gradient dynamics. Then, we propose a fully-distributed algorithm with linear convergence guarantee for aggregative games under partial-decision information. Based on these results, we establish stability properties for online GNE seeking in games with time-varying cost functions and constraints. Finally, we illustrate our findings numerically on an economic dispatch problem for peer-to-peer energy markets.

Recent advances in representation learning have demonstrated an ability to represent information from different modalities such as video, text, and audio in a single high-level embedding vector. In this work we present a self-supervised learning framework that is able to learn a representation that captures finer levels of granularity across different modalities such as concepts or events represented by visual objects or spoken words. Our framework relies on a discretized embedding space created via vector quantization that is shared across different modalities. Beyond the shared embedding space, we propose a Cross-Modal Code Matching objective that forces the representations from different views (modalities) to have a similar distribution over the discrete embedding space such that cross-modal objects/actions localization can be performed without direct supervision. In our experiments we show that the proposed discretized multi-modal fine-grained representation (e.g., pixel/word/frame) can complement high-level summary representations (e.g., video/sentence/waveform) for improved performance on cross-modal retrieval tasks. We also observe that the discretized representation uses individual clusters to represent the same semantic concept across modalities.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.

北京阿比特科技有限公司