Some popular Machine Learning Uncertainty Quantification (ML-UQ) calibration statistics do not have predefined reference values and are mostly used in comparative studies. In consequence, calibration is almost never validated and the diagnostic is left to the appreciation of the reader. Simulated reference values, based on synthetic calibrated datasets derived from actual uncertainties, have been proposed to palliate this problem. As the generative probability distribution for the simulation of synthetic errors is often not constrained, the sensitivity of simulated reference values to the choice of generative distribution might be problematic, shedding a doubt on the calibration diagnostic. This study explores various facets of this problem, and shows that some statistics are excessively sensitive to the choice of generative distribution to be used for validation when the generative distribution is unknown. This is the case, for instance, of the correlation coefficient between absolute errors and uncertainties (CC) and of the expected normalized calibration error (ENCE). A robust validation workflow to deal with simulated reference values is proposed.
We propose a multivariate extension of the Lorenz curve based on multivariate rearrangements of optimal transport theory. We define a vector Lorenz map as the integral of the vector quantile map associated with a multivariate resource allocation. Each component of the Lorenz map is the cumulative share of each resource, as in the traditional univariate case. The pointwise ordering of such Lorenz maps defines a new multivariate majorization order, which is equivalent to preference by any social planner with inequality averse multivariate rank dependent social evaluation functional. We define a family of multi-attribute Gini index and complete ordering based on the Lorenz map. We propose the level sets of an Inverse Lorenz Function as a practical tool to visualize and compare inequality in two dimensions, and apply it to income-wealth inequality in the United States between 1989 and 2022.
Generalized singular values (GSVs) play an essential role in the comparative analysis. In the real world data for comparative analysis, both data matrices are usually numerically low-rank. This paper proposes a randomized algorithm to first approximately extract bases and then calculate GSVs efficiently. The accuracy of both basis extration and comparative analysis quantities, angular distances, generalized fractions of the eigenexpression, and generalized normalized Shannon entropy, are rigursly analyzed. The proposed algorithm is applied to both synthetic data sets and the genome-scale expression data sets. Comparing to other GSVs algorithms, the proposed algorithm achieves the fastest runtime while preserving sufficient accuracy in comparative analysis.
Uncertainty quantification (UQ) in scientific machine learning (SciML) combines the powerful predictive power of SciML with methods for quantifying the reliability of the learned models. However, two major challenges remain: limited interpretability and expensive training procedures. We provide a new interpretation for UQ problems by establishing a new theoretical connection between some Bayesian inference problems arising in SciML and viscous Hamilton-Jacobi partial differential equations (HJ PDEs). Namely, we show that the posterior mean and covariance can be recovered from the spatial gradient and Hessian of the solution to a viscous HJ PDE. As a first exploration of this connection, we specialize to Bayesian inference problems with linear models, Gaussian likelihoods, and Gaussian priors. In this case, the associated viscous HJ PDEs can be solved using Riccati ODEs, and we develop a new Riccati-based methodology that provides computational advantages when continuously updating the model predictions. Specifically, our Riccati-based approach can efficiently add or remove data points to the training set invariant to the order of the data and continuously tune hyperparameters. Moreover, neither update requires retraining on or access to previously incorporated data. We provide several examples from SciML involving noisy data and \textit{epistemic uncertainty} to illustrate the potential advantages of our approach. In particular, this approach's amenability to data streaming applications demonstrates its potential for real-time inferences, which, in turn, allows for applications in which the predicted uncertainty is used to dynamically alter the learning process.
Dynamical low-rank (DLR) approximation has gained interest in recent years as a viable solution to the curse of dimensionality in the numerical solution of kinetic equations including the Boltzmann and Vlasov equations. These methods include the projector-splitting and Basis-update & Galerkin (BUG) DLR integrators, and have shown promise at greatly improving the computational efficiency of kinetic solutions. However, this often comes at the cost of conservation of charge, current and energy. In this work we show how a novel macro-micro decomposition may be used to separate the distribution function into two components, one of which carries the conserved quantities, and the other of which is orthogonal to them. We apply DLR approximation to the latter, and thereby achieve a clean and extensible approach to a conservative DLR scheme which retains the computational advantages of the base scheme. Moreover, our approach requires no change to the mechanics of the DLR approximation, so it is compatible with both the BUG family of integrators and the projector-splitting integrator which we use here. We describe a first-order integrator which can exactly conserve charge and either current or energy, as well as an integrator which exactly conserves charge and energy and exhibits second-order accuracy on our test problems. To highlight the flexibility of the proposed macro-micro decomposition, we implement a pair of velocity space discretizations, and verify the claimed accuracy and conservation properties on a suite of plasma benchmark problems.
Fractional Brownian trajectories (fBm) feature both randomness and strong scale-free correlations, challenging generative models to reproduce the intrinsic memory characterizing the underlying process. Here we test a diffusion probabilistic model on a specific dataset of corrupted images corresponding to incomplete Euclidean distance matrices of fBm at various memory exponents $H$. Our dataset implies uniqueness of the data imputation in the regime of low missing ratio, where the remaining partial graph is rigid, providing the ground truth for the inpainting. We find that the conditional diffusion generation stably reproduces the statistics of missing fBm-distributed distances for different values of $H$ exponent. Furthermore, while diffusion models have been recently shown to remember samples from the training database, we show that diffusion-based inpainting behaves qualitatively different from the database search with the increasing database size. Finally, we apply our fBm-trained diffusion model with $H=1/3$ for completion of chromosome distance matrices obtained in single-cell microscopy experiments, showing its superiority over the standard bioinformatics algorithms. Our source code is available on GitHub at //github.com/alobashev/diffusion_fbm.
This study revisits the problem of identifying the unknown interior Robin boundary of a connected domain using Cauchy data from the exterior region of a harmonic function. It investigates two shape optimization reformulations employing least-squares boundary-data-tracking cost functionals. Firstly, it rigorously addresses the existence of optimal shape solutions, thus filling a gap in the literature. The argumentation utilized in the proof strategy is contingent upon the specific formulation under consideration. Secondly, it demonstrates the ill-posed nature of the two shape optimization formulations by establishing the compactness of the Riesz operator associated with the quadratic shape Hessian corresponding to each cost functional. Lastly, the study employs multiple sets of Cauchy data to address the difficulty of detecting concavities in the unknown boundary. Numerical experiments in two and three dimensions illustrate the numerical procedure relying on Sobolev gradients proposed herein.
In this work we consider the Allen--Cahn equation, a prototypical model problem in nonlinear dynamics that exhibits bifurcations corresponding to variations of a deterministic bifurcation parameter. Going beyond the state-of-the-art, we introduce a random coefficient function in the linear reaction part of the equation, thereby accounting for random, spatially-heterogeneous effects. Importantly, we assume a spatially constant, deterministic mean value of the random coefficient. We show that this mean value is in fact a bifurcation parameter in the Allen--Cahn equation with random coefficients. Moreover, we show that the bifurcation points and bifurcation curves become random objects. We consider two distinct modelling situations: (i) for a spatially homogeneous coefficient we derive analytical expressions for the distribution of the bifurcation points and show that the bifurcation curves are random shifts of a fixed reference curve; (ii) for a spatially heterogeneous coefficient we employ a generalized polynomial chaos expansion to approximate the statistical properties of the random bifurcation points and bifurcation curves. We present numerical examples in 1D physical space, where we combine the popular software package Continuation Core and Toolboxes (CoCo) for numerical continuation and the Sparse Grids Matlab Kit for the polynomial chaos expansion. Our exposition addresses both, dynamical systems and uncertainty quantification, highlighting how analytical and numerical tools from both areas can be combined efficiently for the challenging uncertainty quantification analysis of bifurcations in random differential equations.
Differential abundance analysis is a key component of microbiome studies. It focuses on the task of assessing the magnitude and statistical significance of differences in microbial abundances between conditions. While dozens of methods for differential abundance analysis exist, they have been reported to produce remarkably discordant results. Currently, there is no consensus on the preferred methods. While correctness of results in differential abundance analysis is an ambiguous concept that cannot be evaluated without employing simulated data, we argue that consistency of results across datasets should be considered as an essential quality of a well-performing method. We compared the performance of 13 differential abundance analysis methods employing datasets from multiple (N = 54) taxonomic profiling studies based on 16S rRNA gene or shotgun sequencing. For each method, we examined how the results replicated between random partitions of each dataset and between datasets from independent studies. While certain methods showed good consistency, some widely used methods were observed to make a substantial number of conflicting findings. Overall, the highest consistency without unnecessary reduction in sensitivity was attained by analyzing total sum scaling (TSS) normalized counts with a non-parametric method (Wilcoxon test or ordinal regression model) or linear regression (MaAsLin2). Comparable performance was also attained by analyzing presence/absence of taxa with logistic regression. In conclusion, while numerous sophisticated methods for differential abundance analysis have been developed, elementary methods seem to provide more consistent results without unnecessarily compromising sensitivity. We therefore suggest that the elementary methods should be preferred in microbial differential abundance analysis when replicability needs to be emphasized.
Functional data analysis is an important research field in statistics which treats data as random functions drawn from some infinite-dimensional functional space, and functional principal component analysis (FPCA) based on eigen-decomposition plays a central role for data reduction and representation. After nearly three decades of research, there remains a key problem unsolved, namely, the perturbation analysis of covariance operator for diverging number of eigencomponents obtained from noisy and discretely observed data. This is fundamental for studying models and methods based on FPCA, while there has not been substantial progress since Hall, M\"uller and Wang (2006)'s result for a fixed number of eigenfunction estimates. In this work, we aim to establish a unified theory for this problem, obtaining upper bounds for eigenfunctions with diverging indices in both the $\mathcal{L}^2$ and supremum norms, and deriving the asymptotic distributions of eigenvalues for a wide range of sampling schemes. Our results provide insight into the phenomenon when the $\mathcal{L}^{2}$ bound of eigenfunction estimates with diverging indices is minimax optimal as if the curves are fully observed, and reveal the transition of convergence rates from nonparametric to parametric regimes in connection to sparse or dense sampling. We also develop a double truncation technique to handle the uniform convergence of estimated covariance and eigenfunctions. The technical arguments in this work are useful for handling the perturbation series with noisy and discretely observed functional data and can be applied in models or those involving inverse problems based on FPCA as regularization, such as functional linear regression.
Causal inference with observational studies often suffers from unmeasured confounding, yielding biased estimators based on the unconfoundedness assumption. Sensitivity analysis assesses how the causal conclusions change with respect to different degrees of unmeasured confounding. Most existing sensitivity analysis methods work well for specific types of statistical estimation or testing strategies. We propose a flexible sensitivity analysis framework that can deal with commonly used inverse probability weighting, outcome regression, and doubly robust estimators simultaneously. It is based on the well-known parametrization of the selection bias as comparisons of the observed and counterfactual outcomes conditional on observed covariates. It is attractive for practical use because it only requires simple modifications of the standard estimators. Moreover, it naturally extends to many other causal inference settings, including the causal risk ratio or odds ratio, the average causal effect on the treated units, and studies with survival outcomes. We also develop an R package saci to implement our sensitivity analysis estimators.