亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $\kappa(s,t)$ denote the maximum number of internally disjoint paths in an undirected graph $G$. We consider designing a data structure that includes a list of cuts, and answers in $O(1)$ time the following query: given $s,t \in V$, determine whether $\kappa(s,t) \leq k$, and if so, return a pointer to an $st$-cut of size $\leq k$ in the list. A trivial data structure includes a list of $n(n-1)/2$ cuts and requires $\Theta(kn^2)$ space. We show that $O(kn)$ cuts suffice, thus reducing the space to $O(k^2 n+n^2)$. In the case when $G$ is $k$-connected, we show that $O(n)$ cuts suffice, and that these cuts can be partitioned into $O(k)$ laminar families; this reduces the space to $O(kn)$. The latter result slightly improves and substantially simplifies a recent result of Pettie and Yin [ICALP 2021].

相關內容

Graph Neural Networks (GNNs) rely on the graph structure to define an aggregation strategy where each node updates its representation by combining information from its neighbours. A known limitation of GNNs is that, as the number of layers increases, information gets smoothed and squashed and node embeddings become indistinguishable, negatively affecting performance. Therefore, practical GNN models employ few layers and only leverage the graph structure in terms of limited, small neighbourhoods around each node. Inevitably, practical GNNs do not capture information depending on the global structure of the graph. While there have been several works studying the limitations and expressivity of GNNs, the question of whether practical applications on graph structured data require global structural knowledge or not, remains unanswered. In this work, we empirically address this question by giving access to global information to several GNN models, and observing the impact it has on downstream performance. Our results show that global information can in fact provide significant benefits for common graph-related tasks. We further identify a novel regularization strategy that leads to an average accuracy improvement of more than 5% on all considered tasks.

We study the tractability of conjunctive query answering for queries with unbounded arity. It is well known that tractability of the problem can be characterised in terms of the queries treewidth under the assumption of bounded arity. We extend this result to cases with unbounded arity but degree 2. To do so, we introduce hypergraph dilutions as an alternative method to primal graph minors for studying substructures of hypergraphs. Using dilutions we observe an analogue to the Excluded Grid Theorem for degree 2 hypergraphs. In consequence, we show that that the tractability of conjunctive query answering can be characterised in terms of generalised hypertree width. A similar characterisation is also shown for the corresponding counting problem. We also generalise our main structural result to arbitrary bounded degree and discuss possible paths towards a characterisation of the bounded degree case.

Given a partition of a graph into connected components, the membership oracle asserts whether any two vertices of the graph lie in the same component or not. We prove that for $n\ge k\ge 2$, learning the components of an $n$-vertex hidden graph with $k$ components requires at least $\frac{1}{2}(n-k)(k-1)$ membership queries. This proves the optimality of the $O(nk)$ algorithm proposed by Reyzin and Srivastava (2007) for this problem, improving on the best known information-theoretic bound of $\Omega(n\log k)$ queries. Further, we construct an oracle that can learn the number of components of $G$ in asymptotically fewer queries than learning the full partition, thus answering another question posed by the same authors. Lastly, we introduce a more applicable version of this oracle, and prove asymptotically tight bounds of $\widetilde\Theta(m)$ queries for both learning and verifying an $m$-edge hidden graph $G$ using this oracle.

Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) revamping road networks, (b) rerouting data packets in synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c) and (d) are restrictions to different graph classes. We show that (a) is intractable, even for relaxed variants of the problem. For (b), (c) and (d), we present efficient algorithms to solve the respective problems. We also generalize the problem to when at most $k$ (for a fixed integer $k\geq 2$) contiguous vertices on a shortest path can be changed at a time.

We study the mathematical structure of the solution set (and its tangent space) to the matrix equation $G^*JG=J$ for a given square matrix $J$. In the language of pure mathematics, this is a Lie group which is the isometry group for a bilinear (or a sesquilinear) form. Generally these groups are described as intersections of a few special groups. The tangent space to $\{G: G^*JG=J \}$ consists of solutions to the linear matrix equation $X^*J+JX=0$. For the complex case, the solution set of this linear equation was computed by De Ter{\'a}n and Dopico. We found that on its own, the equation $X^*J+JX=0$ is hard to solve. By throwing into the mix the complementary linear equation $X^*J-JX=0$, we find that rather than increasing the complexity, we reduce the complexity. Not only is it possible to now solve the original problem, but we can approach the broader algebraic and geometric structure. One implication is that the two equations form an $\mathfrak{h}$ and $\mathfrak{m}$ pair familiar in the study of pseudo-Riemannian symmetric spaces. We explicitly demonstrate the computation of the solutions to the equation $X^*J\pm XJ=0$ for real and complex matrices. However, any real, complex or quaternionic case with an arbitrary involution (e.g., transpose, conjugate transpose, and the various quaternion transposes) can be effectively solved with the same strategy. We provide numerical examples and visualizations.

An efficient implicit representation of an $n$-vertex graph $G$ in a family $\mathcal{F}$ of graphs assigns to each vertex of $G$ a binary code of length $O(\log n)$ so that the adjacency between every pair of vertices can be determined only as a function of their codes. This function can depend on the family but not on the individual graph. Every family of graphs admitting such a representation contains at most $2^{O(n\log(n))}$ graphs on $n$ vertices, and thus has at most factorial speed of growth. The Implicit Graph Conjecture states that, conversely, every hereditary graph family with at most factorial speed of growth admits an efficient implicit representation. We refute this conjecture by establishing the existence of hereditary graph families with factorial speed of growth that require codes of length $n^{\Omega(1)}$.

Coloring unit-disk graphs efficiently is an important problem in the global and distributed setting, with applications in radio channel assignment problems when the communication relies on omni-directional antennas of the same power. In this context it is important to bound not only the complexity of the coloring algorithms, but also the number of colors used. In this paper, we consider two natural distributed settings. In the location-aware setting (when nodes know their coordinates in the plane), we give a constant time distributed algorithm coloring any unit-disk graph $G$ with at most $4\omega(G)$ colors, where $\omega(G)$ is the clique number of $G$. This improves upon a classical 3-approximation algorithm for this problem, for all unit-disk graphs whose chromatic number significantly exceeds their clique number. When nodes do not know their coordinates in the plane, we give a distributed algorithm in the LOCAL model that colors every unit-disk graph $G$ with at most $5.68\omega(G)$ colors in $O(\log^3 \log n)$ rounds. Moreover, when $\omega(G)=O(1)$, the algorithm runs in $O(\log^* n)$ rounds. This algorithm is based on a study of the local structure of unit-disk graphs, which is of independent interest. We conjecture that every unit-disk graph $G$ has average degree at most $4\omega(G)$, which would imply the existence of a $O(\log n)$ round algorithm coloring any unit-disk graph $G$ with (approximately) $4\omega(G)$ colors in the LOCAL model.

It is known that the vertex connectivity of a planar graph can be computed in linear time. We extend this result to the class of locally maximal 1-plane graphs: graphs that have an embedding with at most one crossing per edge such that the endpoints of each pair of crossing edges induce the complete graph $K_4$

In order to facilitate the accesses of general users to knowledge graphs, an increasing effort is being exerted to construct graph-structured queries of given natural language questions. At the core of the construction is to deduce the structure of the target query and determine the vertices/edges which constitute the query. Existing query construction methods rely on question understanding and conventional graph-based algorithms which lead to inefficient and degraded performances facing complex natural language questions over knowledge graphs with large scales. In this paper, we focus on this problem and propose a novel framework standing on recent knowledge graph embedding techniques. Our framework first encodes the underlying knowledge graph into a low-dimensional embedding space by leveraging generalized local knowledge graphs. Given a natural language question, the learned embedding representations of the knowledge graph are utilized to compute the query structure and assemble vertices/edges into the target query. Extensive experiments were conducted on the benchmark dataset, and the results demonstrate that our framework outperforms state-of-the-art baseline models regarding effectiveness and efficiency.

Structured queries expressed in languages (such as SQL, SPARQL, or XQuery) offer a convenient and explicit way for users to express their information needs for a number of tasks. In this work, we present an approach to answer these directly over text data without storing results in a database. We specifically look at the case of knowledge bases where queries are over entities and the relations between them. Our approach combines distributed query answering (e.g. Triple Pattern Fragments) with models built for extractive question answering. Importantly, by applying distributed querying answering we are able to simplify the model learning problem. We train models for a large portion (572) of the relations within Wikidata and achieve an average 0.70 F1 measure across all models. We also present a systematic method to construct the necessary training data for this task from knowledge graphs and describe a prototype implementation.

北京阿比特科技有限公司