Implicit radiance functions emerged as a powerful scene representation for reconstructing and rendering photo-realistic views of a 3D scene. These representations, however, suffer from poor editability. On the other hand, explicit representations such as polygonal meshes allow easy editing but are not as suitable for reconstructing accurate details in dynamic human heads, such as fine facial features, hair, teeth, and eyes. In this work, we present Neural Parameterization (NeP), a hybrid representation that provides the advantages of both implicit and explicit methods. NeP is capable of photo-realistic rendering while allowing fine-grained editing of the scene geometry and appearance. We first disentangle the geometry and appearance by parameterizing the 3D geometry into 2D texture space. We enable geometric editability by introducing an explicit linear deformation blending layer. The deformation is controlled by a set of sparse key points, which can be explicitly and intuitively displaced to edit the geometry. For appearance, we develop a hybrid 2D texture consisting of an explicit texture map for easy editing and implicit view and time-dependent residuals to model temporal and view variations. We compare our method to several reconstruction and editing baselines. The results show that the NeP achieves almost the same level of rendering accuracy while maintaining high editability.
Many dynamical systems can be successfully analyzed by representing them as networks. Empirically measured networks and dynamic processes that take place in these situations show heterogeneous, non-Markovian, and intrinsically correlated topologies and dynamics. This makes their analysis particularly challenging. Randomized reference models (RRMs) have emerged as a general and versatile toolbox for studying such systems. Defined as random networks with given features constrained to match those of an input (empirical) network, they may, for example, be used to identify important features of empirical networks and their effects on dynamical processes unfolding in the network. RRMs are typically implemented as procedures that reshuffle an empirical network, making them very generally applicable. However, the effects of most shuffling procedures on network features remain poorly understood, rendering their use nontrivial and susceptible to misinterpretation. Here we propose a unified framework for classifying and understanding microcanonical RRMs (MRRMs) that sample networks with uniform probability. Focusing on temporal networks, we survey applications of MRRMs found in the literature, and we use this framework to build a taxonomy of MRRMs that proposes a canonical naming convention, classifies them, and deduces their effects on a range of important network features. We furthermore show that certain classes of MRRMs may be applied in sequential composition to generate new MRRMs from the existing ones surveyed in this article. We finally provide a tutorial showing how to apply a series of MRRMs to analyze how different network features affect a dynamic process in an empirical temporal network.
Unpaired image translation algorithms can be used for sim2real tasks, but many fail to generate temporally consistent results. We present a new approach that combines differentiable rendering with image translation to achieve temporal consistency over indefinite timescales, using surface consistency losses and \emph{neural neural textures}. We call this algorithm TRITON (Texture Recovering Image Translation Network): an unsupervised, end-to-end, stateless sim2real algorithm that leverages the underlying 3D geometry of input scenes by generating realistic-looking learnable neural textures. By settling on a particular texture for the objects in a scene, we ensure consistency between frames statelessly. Unlike previous algorithms, TRITON is not limited to camera movements -- it can handle the movement of objects as well, making it useful for downstream tasks such as robotic manipulation.
Implicit Neural Representations (INRs) encoding continuous multi-media data via multi-layer perceptrons has shown undebatable promise in various computer vision tasks. Despite many successful applications, editing and processing an INR remains intractable as signals are represented by latent parameters of a neural network. Existing works manipulate such continuous representations via processing on their discretized instance, which breaks down the compactness and continuous nature of INR. In this work, we present a pilot study on the question: how to directly modify an INR without explicit decoding? We answer this question by proposing an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR. Our key insight is that spatial gradients of neural networks can be computed analytically and are invariant to translation, while mathematically we show that any continuous convolution filter can be uniformly approximated by a linear combination of high-order differential operators. With these two knobs, INSP-Net instantiates the signal processing operator as a weighted composition of computational graphs corresponding to the high-order derivatives of INRs, where the weighting parameters can be data-driven learned. Based on our proposed INSP-Net, we further build the first Convolutional Neural Network (CNN) that implicitly runs on INRs, named INSP-ConvNet. Our experiments validate the expressiveness of INSP-Net and INSP-ConvNet in fitting low-level image and geometry processing kernels (e.g. blurring, deblurring, denoising, inpainting, and smoothening) as well as for high-level tasks on implicit fields such as image classification.
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing. While studies over extending 2D StyleGAN to 3D faces have emerged, a corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing. In this paper, we study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures. The problem is ill-posed: innumerable compositions of shape and texture could be rendered to the current image. Furthermore, with the limited capacity of a global latent code, 2D inversion methods cannot preserve faithful shape and texture at the same time when applied to 3D models. To solve this problem, we devise an effective self-training scheme to constrain the learning of inversion. The learning is done efficiently without any real-world 2D-3D training pairs but proxy samples generated from a 3D GAN. In addition, apart from a global latent code that captures the coarse shape and texture information, we augment the generation network with a local branch, where pixel-aligned features are added to faithfully reconstruct face details. We further consider a new pipeline to perform 3D view-consistent editing. Extensive experiments show that our method outperforms state-of-the-art inversion methods in both shape and texture reconstruction quality. Code and data will be released.
We present a neural technique for learning to select a local sub-region around a point which can be used for mesh parameterization. The motivation for our framework is driven by interactive workflows used for decaling, texturing, or painting on surfaces. Our key idea is to incorporate segmentation probabilities as weights of a classical parameterization method, implemented as a novel differentiable parameterization layer within a neural network framework. We train a segmentation network to select 3D regions that are parameterized into 2D and penalized by the resulting distortion, giving rise to segmentations which are distortion-aware. Following training, a user can use our system to interactively select a point on the mesh and obtain a large, meaningful region around the selection which induces a low-distortion parameterization. Our code will be made publicly available.
In this paper we provide an algorithm for maintaining a $(1-\epsilon)$-approximate maximum flow in a dynamic, capacitated graph undergoing edge additions. Over a sequence of $m$-additions to an $n$-node graph where every edge has capacity $O(\mathrm{poly}(m))$ our algorithm runs in time $\widehat{O}(m \sqrt{n} \cdot \epsilon^{-1})$. To obtain this result we design dynamic data structures for the more general problem of detecting when the value of the minimum cost circulation in a dynamic graph undergoing edge additions obtains value at most $F$ (exactly) for a given threshold $F$. Over a sequence $m$-additions to an $n$-node graph where every edge has capacity $O(\mathrm{poly}(m))$ and cost $O(\mathrm{poly}(m))$ we solve this thresholded minimum cost flow problem in $\widehat{O}(m \sqrt{n})$. Both of our algorithms succeed with high probability against an adaptive adversary. We obtain these results by dynamizing the recent interior point method used to obtain an almost linear time algorithm for minimum cost flow (Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva 2022), and introducing a new dynamic data structure for maintaining minimum ratio cycles in an undirected graph that succeeds with high probability against adaptive adversaries.
We present a method for controlling a swarm using its spectral decomposition -- that is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout the operational domain -- guaranteeing scale invariance with respect to the number of agents both for computation and for the operator tasked with controlling the swarm. We use ergodic control, decentralized across the network, for implementation. In the DARPA OFFSET program field setting, we test this interface design for the operator using the STOMP interface -- the same interface used by Raytheon BBN throughout the duration of the OFFSET program. In these tests, we demonstrate that our approach is scale-invariant -- the user specification does not depend on the number of agents; it is persistent -- the specification remains active until the user specifies a new command; and it is real-time -- the user can interact with and interrupt the swarm at any time. Moreover, we show that the spectral/ergodic specification of swarm behavior degrades gracefully as the number of agents goes down, enabling the operator to maintain the same approach as agents become disabled or are added to the network. We demonstrate the scale-invariance and dynamic response of our system in a field relevant simulator on a variety of tactical scenarios with up to 50 agents. We also demonstrate the dynamic response of our system in the field with a smaller team of agents. Lastly, we make the code for our system available.
A critical problem in post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when. In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, SHAP, Occlusion, Vanilla Gradients, Gradients x Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods which demonstrates that no single method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks. By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.
Dynamic neural network is an emerging research topic in deep learning. Compared to static models which have fixed computational graphs and parameters at the inference stage, dynamic networks can adapt their structures or parameters to different inputs, leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc. In this survey, we comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) instance-wise dynamic models that process each instance with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct adaptive computation with respect to different spatial locations of image data and 3) temporal-wise dynamic models that perform adaptive inference along the temporal dimension for sequential data such as videos and texts. The important research problems of dynamic networks, e.g., architecture design, decision making scheme, optimization technique and applications, are reviewed systematically. Finally, we discuss the open problems in this field together with interesting future research directions.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.