亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce an extended discontinuous Galerkin discretization of hyperbolic-parabolic problems on multidimensional semi-infinite domains. Building on previous work on the one-dimensional case, we split the strip-shaped computational domain into a bounded region, discretized by means of discontinuous finite elements using Legendre basis functions, and an unbounded subdomain, where scaled Laguerre functions are used as a basis. Numerical fluxes at the interface allow for a seamless coupling of the two regions. The resulting coupling strategy is shown to produce accurate numerical solutions in tests on both linear and non-linear scalar and vectorial model problems. In addition, an efficient absorbing layer can be simulated in the semi-infinite part of the domain in order to damp outgoing signals with negligible spurious reflections at the interface. By tuning the scaling parameter of the Laguerre basis functions, the extended DG scheme simulates transient dynamics over large spatial scales with a substantial reduction in computational cost at a given accuracy level compared to standard single-domain discontinuous finite element techniques.

相關內容

Computational efficiency is a major bottleneck in using classic graph-based approaches for semi-supervised learning on datasets with a large number of unlabeled examples. Known techniques to improve efficiency typically involve an approximation of the graph regularization objective, but suffer two major drawbacks - first the graph is assumed to be known or constructed with heuristic hyperparameter values, second they do not provide a principled approximation guarantee for learning over the full unlabeled dataset. Building on recent work on learning graphs for semi-supervised learning from multiple datasets for problems from the same domain, and leveraging techniques for fast approximations for solving linear systems in the graph Laplacian matrix, we propose algorithms that overcome both the above limitations. We show a formal separation in the learning-theoretic complexity of sparse and dense graph families. We further show how to approximately learn the best graphs from the sparse families efficiently using the conjugate gradient method. Our approach can also be used to learn the graph efficiently online with sub-linear regret, under mild smoothness assumptions. Our online learning results are stated generally, and may be useful for approximate and efficient parameter tuning in other problems. We implement our approach and demonstrate significant ($\sim$10-100x) speedups over prior work on semi-supervised learning with learned graphs on benchmark datasets.

In this paper, we develop an {\em epsilon admissible subsets} (EAS) model selection approach for performing group variable selection in the high-dimensional multivariate regression setting. This EAS strategy is designed to estimate a posterior-like, generalized fiducial distribution over a parsimonious class of models in the setting of correlated predictors and/or in the absence of a sparsity assumption. The effectiveness of our approach, to this end, is demonstrated empirically in simulation studies, and is compared to other state-of-the-art model/variable selection procedures. Furthermore, assuming a matrix-Normal linear model we show that the EAS strategy achieves {\em strong model selection consistency} in the high-dimensional setting if there does exist a sparse, true data generating set of predictors. In contrast to Bayesian approaches for model selection, our generalized fiducial approach completely avoids the problem of simultaneously having to specify arbitrary prior distributions for model parameters and penalize model complexity; our approach allows for inference directly on the model complexity. \textcolor{black}{Implementation of the method is illustrated through yeast data to identify significant cell-cycle regulating transcription factors.

Line coverage is the task of servicing a given set of one-dimensional features in an environment. It is important for the inspection of linear infrastructure such as road networks, power lines, and oil and gas pipelines. This paper addresses the single robot line coverage problem for aerial and ground robots by modeling it as an optimization problem on a graph. The problem belongs to the broad class of arc routing problems and is closely related to the rural postman problem (RPP) on asymmetric graphs. The paper presents an integer linear programming formulation with proofs of correctness. Using the minimum cost flow problem, we develop approximation algorithms with guarantees on the solution quality. These guarantees also improve the existing results for the asymmetric RPP. The main algorithm partitions the problem into three cases based on the structure of the required graph, i.e., the graph induced by the features that require servicing. We evaluate our algorithms on road networks from the 50 most populous cities in the world, consisting of up to 730 road segments. The algorithms, augmented with improvement heuristics, run within 3s and generate solutions that are within 10% of the optimum. We experimentally demonstrate our algorithms with commercial UAVs.

The monocular visual-inertial odometry (VIO) based on the direct method can leverage all available pixels in the image to simultaneously estimate the camera motion and reconstruct the denser map of the scene in real time. However, the direct method is sensitive to photometric changes, which can be compensated by introducing geometric information in the environment. In this paper, we propose a monocular direct sparse visual-inertial odometry, which exploits the planar regularities (PVI-DSO). Our system detects the planar regularities from the 3D mesh built on the estimated map points. To improve the pose estimation accuracy with the geometric information, a tightly coupled coplanar constraint expression is used to express photometric error in the direct method. Additionally, to improve the optimization efficiency, we elaborately derive the analytical Jacobian of the linearization form for the coplanar constraint. Finally, the inertial measurement error, coplanar point photometric error, non-coplanar photometric error, and prior error are added into the optimizer, which simultaneously improves the pose estimation accuracy and mesh itself. We verified the performance of the whole system on simulation and real-world datasets. Extensive experiments have demonstrated that our system outperforms the state-of-the-art counterparts.

In this work, we aim at constructing numerical schemes, that are as efficient as possible in terms of cost and conservation of invariants, for the Vlasov--Fokker--Planck system coupled with Poisson or Amp\`ere equation. Splitting methods are used where the linear terms in space are treated by spectral or semi-Lagrangian methods and the nonlinear diffusion in velocity in the collision operator is treated using a stabilized Runge--Kutta--Chebyshev (RKC) integrator, a powerful alternative of implicit schemes. The new schemes are shown to exactly preserve mass and momentum. The conservation of total energy is obtained using a suitable approximation of the electric field. An H-theorem is proved in the semi-discrete case, while the entropy decay is illustrated numerically for the fully discretized problem. Numerical experiments that include investigation of Landau damping phenomenon and bump-on-tail instability are performed to illustrate the efficiency of the new schemes.

Measurement outliers are unavoidable when solving real-world robot state estimation problems. A large family of robust loss functions (RLFs) exists to mitigate the effects of outliers, including newly developed adaptive methods that do not require parameter tuning. All of these methods assume that residuals follow a zero-mean Gaussian-like distribution. However, in multivariate problems the residual is often defined as a norm, and norms follow a Chi-like distribution with a non-zero mode value. This produces a "mode gap" that impacts the convergence rate and accuracy of existing RLFs. The proposed approach, "Adaptive MB," accounts for this gap by first estimating the mode of the residuals using an adaptive Chi-like distribution. Applying an existing adaptive weighting scheme only to residuals greater than the mode leads to more robust performance and faster convergence times in two fundamental state estimation problems, point cloud alignment and pose averaging.

Real-world optimisation problems often feature complex combinations of (1) diverse constraints, (2) discrete and mixed spaces, and are (3) highly parallelisable. (4) There are also cases where the objective function cannot be queried if unknown constraints are not satisfied, e.g. in drug discovery, safety on animal experiments (unknown constraints) must be established before human clinical trials (querying objective function) may proceed. However, most existing works target each of the above three problems in isolation and do not consider (4) unknown constraints with query rejection. For problems with diverse constraints and/or unconventional input spaces, it is difficult to apply these techniques as they are often mutually incompatible. We propose cSOBER, a domain-agnostic prudent parallel active sampler for Bayesian optimisation, based on SOBER of Adachi et al. (2023). We consider infeasibility under unknown constraints as a type of integration error that we can estimate. We propose a theoretically-driven approach that propagates such error as a tolerance in the quadrature precision that automatically balances exploitation and exploration with the expected rejection rate. Moreover, our method flexibly accommodates diverse constraints and/or discrete and mixed spaces via adaptive tolerance, including conventional zero-risk cases. We show that cSOBER outperforms competitive baselines on diverse real-world blackbox-constrained problems, including safety-constrained drug discovery, and human-relationship-aware team optimisation over graph-structured space.

In this paper, we propose a novel, computationally efficient reduced order method to solve linear parabolic inverse source problems. Our approach provides accurate numerical solutions without relying on specific training data. The forward solution is constructed using a Krylov sequence, while the source term is recovered via the conjugate gradient (CG) method. Under a weak regularity assumption on the solution of the parabolic partial differential equations (PDEs), we establish convergence of the forward solution and provide a rigorous error estimate for our method. Numerical results demonstrate that our approach offers substantial computational savings compared to the traditional finite element method (FEM) and retains equivalent accuracy.

As the size of the pre-trained language model (PLM) continues to increase, numerous parameter-efficient transfer learning methods have been proposed recently to compensate for the tremendous cost of fine-tuning. Despite the impressive results achieved by large pre-trained language models (PLMs) and various parameter-efficient transfer learning (PETL) methods on sundry benchmarks, it remains unclear if they can handle inputs that have been distributionally shifted effectively. In this study, we systematically explore how the ability to detect out-of-distribution (OOD) changes as the size of the PLM grows or the transfer methods are altered. Specifically, we evaluated various PETL techniques, including fine-tuning, Adapter, LoRA, and prefix-tuning, on three different intention classification tasks, each utilizing various language models with different scales.

The objective of this study is to address the difficulty of simplifying the geometric model in which a differential problem is formulated, also called defeaturing, while simultaneously ensuring that the accuracy of the solution is maintained under control. This enables faster and more efficient simulations, without sacrificing accuracy. More precisely, we consider an isogeometric discretisation of an elliptic model problem defined on a two-dimensional hierarchical B-spline computational domain with a complex boundary. Starting with an oversimplification of the geometry, we build a goal-oriented adaptive strategy that adaptively reintroduces continuous geometrical features in regions where the analysis suggests a large impact on the quantity of interest. This strategy is driven by an a posteriori estimator of the defeaturing error based on first-order shape sensitivity analysis, and it profits from the local refinement properties of hierarchical B-splines. The adaptive algorithm is described together with a procedure to generate (partially) simplified hierarchical B-spline geometrical domains. Numerical experiments are presented to illustrate the proposed strategy and its limitations.

北京阿比特科技有限公司