亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Detecting stereotypes and biases in Large Language Models (LLMs) can enhance fairness and reduce adverse impacts on individuals or groups when these LLMs are applied. However, the majority of existing methods focus on measuring the model's preference towards sentences containing biases and stereotypes within datasets, which lacks interpretability and cannot detect implicit biases and stereotypes in the real world. To address this gap, this paper introduces a four-stage framework to directly evaluate stereotypes and biases in the generated content of LLMs, including direct inquiry testing, serial or adapted story testing, implicit association testing, and unknown situation testing. Additionally, the paper proposes multi-dimensional evaluation metrics and explainable zero-shot prompts for automated evaluation. Using the education sector as a case study, we constructed the Edu-FairBench based on the four-stage framework, which encompasses 12,632 open-ended questions covering nine sensitive factors and 26 educational scenarios. Experimental results reveal varying degrees of stereotypes and biases in five LLMs evaluated on Edu-FairBench. Moreover, the results of our proposed automated evaluation method have shown a high correlation with human annotations.

相關內容

The estimation of origin-destination (OD) matrices is a crucial aspect of Intelligent Transport Systems (ITS). It involves adjusting an initial OD matrix by regressing the current observations like traffic counts of road sections (e.g., using least squares). However, the OD estimation problem lacks sufficient constraints and is mathematically underdetermined. To alleviate this problem, some researchers incorporate a prior OD matrix as a target in the regression to provide more structural constraints. However, this approach is highly dependent on the existing prior matrix, which may be outdated. Others add structural constraints through sensor data, such as vehicle trajectory and speed, which can reflect more current structural constraints in real-time. Our proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization. This approach combines the advantages of both deep learning and numerical optimization algorithms. The neural network(NN) learns to infer structural constraints from probe traffic flows, eliminating dependence on prior information and providing real-time performance. Additionally, due to the generalization capability of NN, this method is economical in engineering. We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset. Subsequently, we verified the stability of our method on real traffic data. Our experiments provided confirmation of the benefits of combining NN and numerical optimization.

Speech super-resolution (SSR) aims to predict a high resolution (HR) speech signal from its low resolution (LR) corresponding part. Most neural SSR models focus on producing the final result in a noise-free environment by recovering the spectrogram of high-frequency part of the signal and concatenating it with the original low-frequency part. Although these methods achieve high accuracy, they become less effective when facing the real-world scenario, where unavoidable noise is present. To address this problem, we propose a Super Denoise Net (SDNet), a neural network for a joint task of super-resolution and noise reduction from a low sampling rate signal. To that end, we design gated convolution and lattice convolution blocks to enhance the repair capability and capture information in the time-frequency axis, respectively. The experiments show our method outperforms baseline speech denoising and SSR models on DNS 2020 no-reverb test set with higher objective and subjective scores.

Proprietary Large Language Models (LLMs), such as ChatGPT, have garnered significant attention due to their exceptional capabilities in handling a diverse range of tasks. Recent studies demonstrate that open-sourced smaller foundational models, such as 7B-size LLaMA, can also display remarkable proficiency in tackling diverse tasks when fine-tuned using instruction-driven data. In this work, we investigate a practical problem setting where the primary focus is on one or a few particular tasks rather than general-purpose instruction following, and explore whether LLMs can be beneficial and further improved for such targeted scenarios. We choose the writing-assistant scenario as the testbed, which includes seven writing tasks. We collect training data for these tasks, reframe them in an instruction-following format, and subsequently refine the LLM, specifically LLaMA, via instruction tuning. Experimental results show that fine-tuning LLaMA on writing instruction data significantly improves its ability on writing tasks. We also conduct more experiments and analyses to offer insights for future work on effectively fine-tuning LLaMA for specific scenarios. Finally, we initiate a discussion regarding the necessity of employing LLMs for only one targeted task, taking into account the efforts required for tuning and the resources consumed during deployment.

We consider stochastic approximations of sampling algorithms, such as Stochastic Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD). We observe that the noise introduced by the stochastic approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian. We harness this structure to absorb the stochastic approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms. For SGLD, we prove the first stable convergence rate in KL divergence without requiring uniform warm start, assuming the target density satisfies a Log-Sobolev Inequality. Our result implies superior first-order oracle complexity compared to prior works, under significantly milder assumptions. We also prove the first guarantees for SGLD under even weaker conditions such as H\"{o}lder smoothness and Poincare Inequality, thus bridging the gap between the state-of-the-art guarantees for LMC and SGLD. Our analysis motivates a new algorithm called covariance correction, which corrects for the additional noise introduced by the stochastic approximation by rescaling the strength of the diffusion. Finally, we apply our techniques to analyze RBM, and significantly improve upon the guarantees in prior works (such as removing exponential dependence on horizon), under minimal assumptions.

A typical neural speech enhancement (SE) approach mainly handles speech and noise mixtures, which is not optimal for singing voice enhancement scenarios. Music source separation (MSS) models treat vocals and various accompaniment components equally, which may reduce performance compared to the model that only considers vocal enhancement. In this paper, we propose a novel multi-band temporal-frequency neural network (MBTFNet) for singing voice enhancement, which particularly removes background music, noise and even backing vocals from singing recordings. MBTFNet combines inter and intra-band modeling for better processing of full-band signals. Dual-path modeling are introduced to expand the receptive field of the model. We propose an implicit personalized enhancement (IPE) stage based on signal-to-noise ratio (SNR) estimation, which further improves the performance of MBTFNet. Experiments show that our proposed model significantly outperforms several state-of-the-art SE and MSS models.

Basecalling, an essential step in many genome analysis studies, relies on large Deep Neural Networks (DNNs) to achieve high accuracy. Unfortunately, these DNNs are computationally slow and inefficient, leading to considerable delays and resource constraints in the sequence analysis process. A Computation-In-Memory (CIM) architecture using memristors can significantly accelerate the performance of DNNs. However, inherent device non-idealities and architectural limitations of such designs can greatly degrade the basecalling accuracy, which is critical for accurate genome analysis. To facilitate the adoption of memristor-based CIM designs for basecalling, it is important to (1) conduct a comprehensive analysis of potential CIM architectures and (2) develop effective strategies for mitigating the possible adverse effects of inherent device non-idealities and architectural limitations. This paper proposes Swordfish, a novel hardware/software co-design framework that can effectively address the two aforementioned issues. Swordfish incorporates seven circuit and device restrictions or non-idealities from characterized real memristor-based chips. Swordfish leverages various hardware/software co-design solutions to mitigate the basecalling accuracy loss due to such non-idealities. To demonstrate the effectiveness of Swordfish, we take Bonito, the state-of-the-art (i.e., accurate and fast), open-source basecaller as a case study. Our experimental results using Sword-fish show that a CIM architecture can realistically accelerate Bonito for a wide range of real datasets by an average of 25.7x, with an accuracy loss of 6.01%.

We introduce a neural-preconditioned iterative solver for Poisson equations with mixed boundary conditions. The Poisson equation is ubiquitous in scientific computing: it governs a wide array of physical phenomena, arises as a subproblem in many numerical algorithms, and serves as a model problem for the broader class of elliptic PDEs. The most popular Poisson discretizations yield large sparse linear systems. At high resolution, and for performance-critical applications, iterative solvers can be advantageous for these -- but only when paired with powerful preconditioners. The core of our solver is a neural network trained to approximate the inverse of a discrete structured-grid Laplace operator for a domain of arbitrary shape and with mixed boundary conditions. The structure of this problem motivates a novel network architecture that we demonstrate is highly effective as a preconditioner even for boundary conditions outside the training set. We show that on challenging test cases arising from an incompressible fluid simulation, our method outperforms state-of-the-art solvers like algebraic multigrid as well as some recent neural preconditioners.

Self-Supervised Learning (SSL) models have demonstrated exceptional performance in various speech tasks, particularly in low-resource and multilingual domains. Recent works show that fusing SSL models could achieve superior performance compared to using one SSL model. However, fusion models have increased model parameter size, leading to longer inference times. In this paper, we propose a novel approach of predicting other SSL models' features from a single SSL model, resulting in a light-weight framework with competitive performance. Our experiments show that SSL feature prediction models outperform individual SSL models in multilingual speech recognition tasks. The leading prediction model achieves an average SUPERB score increase of 135.4 in ML-SUPERB benchmarks. Moreover, our proposed framework offers an efficient solution, as it reduces the resulting model parameter size and inference times compared to previous fusion models.

The relationship between brain structure and function is critical for revealing the pathogenesis of brain disease, including Alzheimer's disease (AD). However, it is a great challenge to map brain structure-function connections due to various reasons. In this work, a bidirectional graph generative adversarial networks (BGGAN) is proposed to represent brain structure-function connections. Specifically, by designing a module incorporating inner graph convolution network (InnerGCN), the generators of BGGAN can employ features of direct and indirect brain regions to learn the mapping function between structural domain and functional domain. Besides, a new module named Balancer is designed to counterpoise the optimization between generators and discriminators. By introducing the Balancer into BGGAN, both the structural generator and functional generator can not only alleviate the issue of mode collapse but also learn complementarity of structural and functional features. Experimental results using ADNI datasets show that the both the generated structure connections and generated function connections can improve the identification accuracy of AD. More importantly, based the proposed model, it is found that the relationship between brain structure and function is not a complete one-to-one correspondence. Brain structure is the basis of brain function. The strong structural connections are almost accompanied by strong functional connections.

Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.

北京阿比特科技有限公司