亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates the asymptotic behavior of structural break tests in the harmonic domain for time-dependent spherical random fields. In particular, we prove a Functional Central Limit Theorem result for the fluctuations over time of the sample spherical harmonic coefficients, under the null of isotropy and stationarity; furthermore, we prove consistency of the corresponding CUSUM test, under a broad range of alternatives. Our results are then applied to NCEP data on global temperature: our estimates suggest that Climate Change does not simply affect global average temperatures, but also the nature of spatial fluctuations at different scales.

相關內容

This paper presents a novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. We show mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach we provide a generalization of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case. We demonstrate that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. We illustrate its practical advantages by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and time series of windspeed data at six locations in California.

We consider linear random coefficient regression models, where the regressors are allowed to have a finite support. First, we investigate identifiability, and show that the means and the variances and covariances of the random coefficients are identified from the first two conditional moments of the response given the covariates if the support of the covariates, excluding the intercept, contains a Cartesian product with at least three points in each coordinate. We also discuss ientification of higher-order mixed moments, as well as partial identification in the presence of a binary regressor. Next we show the variable selection consistency of the adaptive LASSO for the variances and covariances of the random coefficients in finite and moderately high dimensions. This implies that the estimated covariance matrix will actually be positive semidefinite and hence a valid covariance matrix, in contrast to the estimate arising from a simple least squares fit. We illustrate the proposed method in a simulation study.

Recently, Gilmer proved the first constant lower bound for the union-closed sets conjecture via an information-theoretic argument. The heart of the argument is an entropic inequality involving the OR function of two i.i.d.\ binary vectors, and the best constant obtainable through the i.i.d.\ coupling is $\frac{3-\sqrt{5}}{2}\approx0.38197$. Sawin demonstrated that the bound can be strictly improved by considering a convex combination of the i.i.d.\ coupling and the max-entropy coupling, and the best constant obtainable through this approach is around 0.38234, as evaluated by Yu and Cambie. In this work we show analytically that the bound can be further strictly improved by considering another class of coupling under which the two binary sequences are i.i.d.\ conditioned on an auxiliary random variable. We also provide a new class of bounds in terms of finite-dimensional optimization. For a basic instance from this class, analysis assisted with numerically solved 9-dimensional optimization suggests that the optimizer assumes a certain structure. Under numerically verified hypotheses, the lower bound for the union-closed sets conjecture can be improved to approximately 0.38271, a number that can be defined as the solution to an analytic equation.

Dynamic trees are a well-studied and fundamental building block of dynamic graph algorithms dating back to the seminal work of Sleator and Tarjan [STOC'81, (1981), pp. 114-122]. The problem is to maintain a tree subject to online edge insertions and deletions while answering queries about the tree, such as the heaviest weight on a path, etc. In the parallel batch-dynamic setting, the goal is to process batches of edge updates work efficiently in low ($\text{polylog}\ n$) span. Two work-efficient algorithms are known, batch-parallel Euler Tour Trees by Tseng et al. [ALENEX'19, (2019), pp. 92-106] and parallel Rake-Compress (RC) Trees by Acar et al. [ESA'20, (2020), pp. 2:1-2:23]. Both however are randomized and work efficient in expectation. Several downstream results that use these data structures (and indeed to the best of our knowledge, all known work-efficient parallel batch-dynamic graph algorithms) are therefore also randomized. In this work, we give the first deterministic work-efficient solution to the problem. Our algorithm maintains a dynamic parallel tree contraction subject to batches of $k$ edge updates deterministically in worst-case $O(k \log(1 + n/k))$ work and $O(\log n \log^{(c)} k)$ span for any constant $c$. This allows us to implement parallel batch-dynamic RC-Trees with worst-case $O(k \log(1 + n/k))$ work updates and queries deterministically. Our techniques that we use to obtain the given span bound can also be applied to the state-of-the-art randomized variant of the algorithm to improve its span from $O(\log n \log^* n)$ to $O(\log n)$.

We propose novel statistics which maximise the power of a two-sample test based on the Maximum Mean Discrepancy (MMD), by adapting over the set of kernels used in defining it. For finite sets, this reduces to combining (normalised) MMD values under each of these kernels via a weighted soft maximum. Exponential concentration bounds are proved for our proposed statistics under the null and alternative. We further show how these kernels can be chosen in a data-dependent but permutation-independent way, in a well-calibrated test, avoiding data splitting. This technique applies more broadly to general permutation-based MMD testing, and includes the use of deep kernels with features learnt using unsupervised models such as auto-encoders. We highlight the applicability of our MMD-FUSE test on both synthetic low-dimensional and real-world high-dimensional data, and compare its performance in terms of power against current state-of-the-art kernel tests.

We consider the task of estimating a conditional density using i.i.d. samples from a joint distribution, which is a fundamental problem with applications in both classification and uncertainty quantification for regression. For joint density estimation, minimax rates have been characterized for general density classes in terms of uniform (metric) entropy, a well-studied notion of statistical capacity. When applying these results to conditional density estimation, the use of uniform entropy -- which is infinite when the covariate space is unbounded and suffers from the curse of dimensionality -- can lead to suboptimal rates. Consequently, minimax rates for conditional density estimation cannot be characterized using these classical results. We resolve this problem for well-specified models, obtaining matching (within logarithmic factors) upper and lower bounds on the minimax Kullback--Leibler risk in terms of the empirical Hellinger entropy for the conditional density class. The use of empirical entropy allows us to appeal to concentration arguments based on local Rademacher complexity, which -- in contrast to uniform entropy -- leads to matching rates for large, potentially nonparametric classes and captures the correct dependence on the complexity of the covariate space. Our results require only that the conditional densities are bounded above, and do not require that they are bounded below or otherwise satisfy any tail conditions.

We consider the problem of estimating a scalar target parameter in the presence of nuisance parameters. Replacing the unknown nuisance parameter with a nonparametric estimator, e.g.,a machine learning (ML) model, is convenient but has shown to be inefficient due to large biases. Modern methods, such as the targeted minimum loss-based estimation (TMLE) and double machine learning (DML), achieve optimal performance under flexible assumptions by harnessing ML estimates while mitigating the plug-in bias. To avoid a sub-optimal bias-variance trade-off, these methods perform a debiasing step of the plug-in pre-estimate. Existing debiasing methods require the influence function of the target parameter as input. However, deriving the IF requires specialized expertise and thus obstructs the adaptation of these methods by practitioners. We propose a novel way to debias plug-in estimators which (i) is efficient, (ii) does not require the IF to be implemented, (iii) is computationally tractable, and therefore can be readily adapted to new estimation problems and automated without analytic derivations by the user. We build on the TMLE framework and update a plug-in estimate with a regularized likelihood maximization step over a nonparametric model constructed with a reproducing kernel Hilbert space (RKHS), producing an efficient plug-in estimate for any regular target parameter. Our method, thus, offers the efficiency of competing debiasing techniques without sacrificing the utility of the plug-in approach.

Piecewise constant priors are routinely used in the Bayesian Cox proportional hazards model for survival analysis. Despite its popularity, large sample properties of this Bayesian method are not yet well understood. This work provides a unified theory for posterior distributions in this setting, not requiring the priors to be conjugate. We first derive contraction rate results for wide classes of histogram priors on the unknown hazard function and prove asymptotic normality of linear functionals of the posterior hazard in the form of Bernstein--von Mises theorems. Second, using recently developed multiscale techniques, we derive functional limiting results for the cumulative hazard and survival function. Frequentist coverage properties of Bayesian credible sets are investigated: we prove that certain easily computable credible bands for the survival function are optimal frequentist confidence bands. We conduct simulation studies that confirm these predictions, with an excellent behavior particularly in finite samples. Our results suggest that the Bayesian approach can provide an easy solution to obtain both the coefficients estimate and the credible bands for survival function in practice.

It is shown that over-parameterized neural networks can achieve minimax optimal rates of convergence (up to logarithmic factors) for learning functions from certain smooth function classes, if the weights are suitably constrained or regularized. Specifically, we consider the nonparametric regression of estimating an unknown $d$-variate function by using shallow ReLU neural networks. It is assumed that the regression function is from the H\"older space with smoothness $\alpha<(d+3)/2$ or a variation space corresponding to shallow neural networks, which can be viewed as an infinitely wide neural network. In this setting, we prove that least squares estimators based on shallow neural networks with certain norm constraints on the weights are minimax optimal, if the network width is sufficiently large. As a byproduct, we derive a new size-independent bound for the local Rademacher complexity of shallow ReLU neural networks, which may be of independent interest.

Pini and Vantini (2017) introduced the interval-wise testing procedure which performs local inference for functional data defined on an interval domain, where the output is an adjusted p-value function that controls for type I errors. We extend this idea to a general setting where domain is a Riemannian manifolds. This requires new methodology such as how to define adjustment sets on product manifolds and how to approximate the test statistic when the domain has non-zero curvature. We propose to use permutation tests for inference and apply the procedure in three settings: a simulation on a "chameleon-shaped" manifold and two applications related to climate change where the manifolds are a complex subset of $S^2$ and $S^2 \times S^1$, respectively. We note the tradeoff between type I and type II errors: increasing the adjustment set reduces the type I error but also results in smaller areas of significance. However, some areas still remain significant even at maximal adjustment.

北京阿比特科技有限公司