DNA motif discovery is an important issue in gene research, which aims to identify transcription factor binding sites (i.e., motifs) in DNA sequences to reveal the mechanisms that regulate gene expression. However, the phenomenon of data silos and the problem of privacy leakage have seriously hindered the development of DNA motif discovery. On the one hand, the phenomenon of data silos makes data collection difficult. On the other hand, the collection and use of DNA data become complicated and difficult because DNA is sensitive private information. In this context, how discovering DNA motifs under the premise of ensuring privacy and security and alleviating data silos has become a very important issue. Therefore, this paper proposes a novel method, namely DP-FLMD, to address this problem. Note that this is the first application of federated learning to the field of genetics research. The federated learning technique is used to solve the problem of data silos. It has the advantage of enabling multiple participants to train models together and providing privacy protection services. To address the challenges of federated learning in terms of communication costs, this paper applies a sampling method and a strategy for reducing communication costs to DP-FLMD. In addition, differential privacy, a privacy protection technique with rigorous mathematical proof, is also applied to DP-FLMD. Experiments on the DNA datasets show that DP-FLMD has high mining accuracy and runtime efficiency, and the performance of the algorithm is affected by some parameters.
Decision trees are interpretable models that are well-suited to non-linear learning problems. Much work has been done on extending decision tree learning algorithms with differential privacy, a system that guarantees the privacy of samples within the training data. However, current state-of-the-art algorithms for this purpose sacrifice much utility for a small privacy benefit. These solutions create random decision nodes that reduce decision tree accuracy or spend an excessive share of the privacy budget on labeling leaves. Moreover, many works do not support or leak information about feature values when data is continuous. We propose a new method called PrivaTree based on private histograms that chooses good splits while consuming a small privacy budget. The resulting trees provide a significantly better privacy-utility trade-off and accept mixed numerical and categorical data without leaking additional information. Finally, while it is notoriously hard to give robustness guarantees against data poisoning attacks, we prove bounds for the expected success rates of backdoor attacks against differentially-private learners. Our experimental results show that PrivaTree consistently outperforms previous works on predictive accuracy and significantly improves robustness against backdoor attacks compared to regular decision trees.
Terabytes of data are collected every day by wind turbine manufacturers from their fleets. The data contain valuable real-time information for turbine health diagnostics and performance monitoring, for predicting rare failures and the remaining service life of critical parts. And yet, this wealth of data from wind turbine fleets remains inaccessible to operators, utility companies, and researchers as manufacturing companies prefer the privacy of their fleets' turbine data for business strategic reasons. The lack of data access impedes the exploitation of opportunities, such as improving data-driven turbine operation and maintenance strategies and reducing downtimes. We present a distributed federated machine learning approach that leaves the data on the wind turbines to preserve the data privacy, as desired by manufacturers, while still enabling fleet-wide learning on those local data. We demonstrate in two case studies that wind turbines which are scarce in representative training data benefit from more accurate fault detection models with federated learning, while no turbine experiences a loss in model performance by participating in the federated learning process. When comparing conventional and federated training processes, the average model training time rises significantly by a factor of up to 14 in the federated training due to increased communication and overhead operations. Thus, model training times might constitute an impediment that needs to be further explored and alleviated in federated learning applications, especially for large wind turbine fleets.
Federated learning (FL) is a distributed machine learning strategy that enables participants to collaborate and train a shared model without sharing their individual datasets. Privacy and fairness are crucial considerations in FL. While FL promotes privacy by minimizing the amount of user data stored on central servers, it still poses privacy risks that need to be addressed. Industry standards such as differential privacy, secure multi-party computation, homomorphic encryption, and secure aggregation protocols are followed to ensure privacy in FL. Fairness is also a critical issue in FL, as models can inherit biases present in local datasets, leading to unfair predictions. Balancing privacy and fairness in FL is a challenge, as privacy requires protecting user data while fairness requires representative training data. This paper presents a "Fair Differentially Private Federated Learning Framework" that addresses the challenges of generating a fair global model without validation data and creating a globally private differential model. The framework employs clipping techniques for biased model updates and Gaussian mechanisms for differential privacy. The paper also reviews related works on privacy and fairness in FL, highlighting recent advancements and approaches to mitigate bias and ensure privacy. Achieving privacy and fairness in FL requires careful consideration of specific contexts and requirements, taking into account the latest developments in industry standards and techniques.
We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and R\'enyi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.
Vertical federate learning (VFL) has recently emerged as an appealing distributed paradigm empowering multi-party collaboration for training high-quality models over vertically partitioned datasets. Gradient boosting has been popularly adopted in VFL, which builds an ensemble of weak learners (typically decision trees) to achieve promising prediction performance. Recently there have been growing interests in using decision table as an intriguing alternative weak learner in gradient boosting, due to its simpler structure, good interpretability, and promising performance. In the literature, there have been works on privacy-preserving VFL for gradient boosted decision trees, but no prior work has been devoted to the emerging case of decision tables. Training and inference on decision tables are different from that the case of generic decision trees, not to mention gradient boosting with decision tables in VFL. In light of this, we design, implement, and evaluate Privet, the first system framework enabling privacy-preserving VFL service for gradient boosted decision tables. Privet delicately builds on lightweight cryptography and allows an arbitrary number of participants holding vertically partitioned datasets to securely train gradient boosted decision tables. Extensive experiments over several real-world datasets and synthetic datasets demonstrate that Privet achieves promising performance, with utility comparable to plaintext centralized learning.
Taxi-demand prediction is an important application of machine learning that enables taxi-providing facilities to optimize their operations and city planners to improve transportation infrastructure and services. However, the use of sensitive data in these systems raises concerns about privacy and security. In this paper, we propose the use of federated learning for taxi-demand prediction that allows multiple parties to train a machine learning model on their own data while keeping the data private and secure. This can enable organizations to build models on data they otherwise would not be able to access. Evaluation with real-world data collected from 16 taxi service providers in Japan over a period of six months showed that the proposed system can predict the demand level accurately within 1\% error compared to a single model trained with integrated data.
The Private Aggregation of Teacher Ensembles (PATE) is a machine learning framework that enables the creation of private models through the combination of multiple "teacher" models and a "student" model. The student model learns to predict an output based on the voting of the teachers, and the resulting model satisfies differential privacy. PATE has been shown to be effective in creating private models in semi-supervised settings or when protecting data labels is a priority. This paper explores whether the use of PATE can result in unfairness, and demonstrates that it can lead to accuracy disparities among groups of individuals. The paper also analyzes the algorithmic and data properties that contribute to these disproportionate impacts, why these aspects are affecting different groups disproportionately, and offers recommendations for mitigating these effects
Learning on graphs is becoming prevalent in a wide range of applications including social networks, robotics, communication, medicine, etc. These datasets belonging to entities often contain critical private information. The utilization of data for graph learning applications is hampered by the growing privacy concerns from users on data sharing. Existing privacy-preserving methods pre-process the data to extract user-side features, and only these features are used for subsequent learning. Unfortunately, these methods are vulnerable to adversarial attacks to infer private attributes. We present a novel privacy-respecting framework for distributed graph learning and graph-based machine learning. In order to perform graph learning and other downstream tasks on the server side, this framework aims to learn features as well as distances without requiring actual features while preserving the original structural properties of the raw data. The proposed framework is quite generic and highly adaptable. We demonstrate the utility of the Euclidean space, but it can be applied with any existing method of distance approximation and graph learning for the relevant spaces. Through extensive experimentation on both synthetic and real datasets, we demonstrate the efficacy of the framework in terms of comparing the results obtained without data sharing to those obtained with data sharing as a benchmark. This is, to our knowledge, the first privacy-preserving distributed graph learning framework.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.