Terabytes of data are collected every day by wind turbine manufacturers from their fleets. The data contain valuable real-time information for turbine health diagnostics and performance monitoring, for predicting rare failures and the remaining service life of critical parts. And yet, this wealth of data from wind turbine fleets remains inaccessible to operators, utility companies, and researchers as manufacturing companies prefer the privacy of their fleets' turbine data for business strategic reasons. The lack of data access impedes the exploitation of opportunities, such as improving data-driven turbine operation and maintenance strategies and reducing downtimes. We present a distributed federated machine learning approach that leaves the data on the wind turbines to preserve the data privacy, as desired by manufacturers, while still enabling fleet-wide learning on those local data. We demonstrate in two case studies that wind turbines which are scarce in representative training data benefit from more accurate fault detection models with federated learning, while no turbine experiences a loss in model performance by participating in the federated learning process. When comparing conventional and federated training processes, the average model training time rises significantly by a factor of up to 14 in the federated training due to increased communication and overhead operations. Thus, model training times might constitute an impediment that needs to be further explored and alleviated in federated learning applications, especially for large wind turbine fleets.
In the last decade, Federated Learning (FL) has gained relevance in training collaborative models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the most common approach in the literature, where a central entity creates a global model. However, a centralized approach leads to increased latency due to bottlenecks, heightened vulnerability to system failures, and trustworthiness concerns affecting the entity responsible for the global model creation. Decentralized Federated Learning (DFL) emerged to address these concerns by promoting decentralized model aggregation and minimizing reliance on centralized architectures. However, despite the work done in DFL, the literature has not (i) studied the main aspects differentiating DFL and CFL; (ii) analyzed DFL frameworks to create and evaluate new solutions; and (iii) reviewed application scenarios using DFL. Thus, this article identifies and analyzes the main fundamentals of DFL in terms of federation architectures, topologies, communication mechanisms, security approaches, and key performance indicators. Additionally, the paper at hand explores existing mechanisms to optimize critical DFL fundamentals. Then, the most relevant features of the current DFL frameworks are reviewed and compared. After that, it analyzes the most used DFL application scenarios, identifying solutions based on the fundamentals and frameworks previously defined. Finally, the evolution of existing DFL solutions is studied to provide a list of trends, lessons learned, and open challenges.
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization. In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices. The goal is to jointly determine the bitwidths employed for local FL model quantization and the set of devices participating in FL training at each iteration. We pose this as an optimization problem that aims to minimize the training loss of quantized FL under a per-iteration device sampling budget and delay requirement. However, the formulated problem is difficult to solve without (i) a concrete understanding of how quantization impacts global ML performance and (ii) the ability of the server to construct estimates of this process efficiently. To address the first challenge, we analytically characterize how limited wireless resources and induced quantization errors affect the performance of the proposed FL method. Our results quantify how the improvement of FL training loss between two consecutive iterations depends on the device selection and quantization scheme as well as on several parameters inherent to the model being learned. Then, we show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations. Compared to model-free RL, this model-based RL approach leverages the derived mathematical characterization of the FL training process to discover an effective device selection and quantization scheme without imposing additional device communication overhead. Simulation results show that the proposed FL algorithm can reduce the convergence time.
Collective privacy loss becomes a colossal problem, an emergency for personal freedoms and democracy. But, are we prepared to handle personal data as scarce resource and collectively share data under the doctrine: as little as possible, as much as necessary? We hypothesize a significant privacy recovery if a population of individuals, the data collective, coordinates to share minimum data for running online services with the required quality. Here we show how to automate and scale-up complex collective arrangements for privacy recovery using decentralized artificial intelligence. For this, we compare for first time attitudinal, intrinsic, rewarded and coordinated data sharing in a rigorous living-lab experiment of high realism involving >27,000 real data disclosures. Using causal inference and cluster analysis, we differentiate criteria predicting privacy and five key data-sharing behaviors. Strikingly, data-sharing coordination proves to be a win-win for all: remarkable privacy recovery for people with evident costs reduction for service providers.
Objective: The NEX project has developed an integrated Internet of Things (IoT) system coupled with data analytics to offer unobtrusive health and wellness monitoring supporting older adults living independently at home. Monitoring {currently} involves visualising a set of automatically detected activities of daily living (ADLs) for each participant. The detection of ADLs is achieved {} to allow the incorporation of additional participants whose ADLs are detected without re-training the system. Methods: Following an extensive User Needs and Requirements study involving 426 participants, a pilot trial and a friendly trial of the deployment, an Action Research Cycle (ARC) trial was completed. This involved 23 participants over a 10-week period each with c.20 IoT sensors in their homes. During the ARC trial, participants each took part in two data-informed briefings which presented visualisations of their own in-home activities. The briefings also gathered training data on the accuracy of detected activities. Association rule mining was then used on the combination of data from sensors and participant feedback to improve the automatic detection of ADLs. Results: Association rule mining was used to detect a range of ADLs for each participant independently of others and was then used to detect ADLs across participants using a single set of rules {for each ADL}. This allows additional participants to be added without the necessity of them providing training data. Conclusions: Additional participants can be added to the NEX system without the necessity to re-train the system for automatic detection of the set of their activities of daily living.
This paper proposes a privacy-preserving and accountable billing (PA-Bill) protocol for trading in peer-to-peer energy markets, addressing situations where there may be discrepancies between the volume of energy committed and delivered. Such discrepancies can lead to challenges in providing both privacy and accountability while maintaining accurate billing. To overcome these challenges, a universal cost splitting mechanism is proposed that prioritises privacy and accountability. It leverages a homomorphic encryption cryptosystem to provide privacy and employs blockchain technology to establish accountability. A dispute resolution mechanism is also introduced to minimise the occurrence of erroneous bill calculations while ensuring accountability and non-repudiation throughout the billing process. Our evaluation demonstrates that PA-Bill offers an effective billing mechanism that maintains privacy and accountability in peer-to-peer energy markets utilising a semi-decentralised approach.
From learning assistance to companionship, social robots promise to enhance many aspects of daily life. However, social robots have not seen widespread adoption, in part because (1) they do not adapt their behavior to new users, and (2) they do not provide sufficient privacy protections. Centralized learning, whereby robots develop skills by gathering data on a server, contributes to these limitations by preventing online learning of new experiences and requiring storage of privacy-sensitive data. In this work, we propose a decentralized learning alternative that improves the privacy and personalization of social robots. We combine two machine learning approaches, Federated Learning and Continual Learning, to capture interaction dynamics distributed physically across robots and temporally across repeated robot encounters. We define a set of criteria that should be balanced in decentralized robot learning scenarios. We also develop a new algorithm -- Elastic Transfer -- that leverages importance-based regularization to preserve relevant parameters across robots and interactions with multiple humans. We show that decentralized learning is a viable alternative to centralized learning in a proof-of-concept Socially-Aware Navigation domain, and demonstrate how Elastic Transfer improves several of the proposed criteria.
With the rapid proliferation of Internet of Things (IoT) devices and the growing concern for data privacy among the public, Federated Learning (FL) has gained significant attention as a privacy-preserving machine learning paradigm. FL enables the training of a global model among clients without exposing local data. However, when a federated learning system runs on wireless communication networks, limited wireless resources, heterogeneity of clients, and network transmission failures affect its performance and accuracy. In this study, we propose a novel dynamic cross-tier FL scheme, named FedDCT to increase training accuracy and performance in wireless communication networks. We utilize a tiering algorithm that dynamically divides clients into different tiers according to specific indicators and assigns specific timeout thresholds to each tier to reduce the training time required. To improve the accuracy of the model without increasing the training time, we introduce a cross-tier client selection algorithm that can effectively select the tiers and participants. Simulation experiments show that our scheme can make the model converge faster and achieve a higher accuracy in wireless communication networks.
User selection has become crucial for decreasing the communication costs of federated learning (FL) over wireless networks. However, centralized user selection causes additional system complexity. This study proposes a network intrinsic approach of distributed user selection that leverages the radio resource competition mechanism in random access. Taking the carrier sensing multiple access (CSMA) mechanism as an example of random access, we manipulate the contention window (CW) size to prioritize certain users for obtaining radio resources in each round of training. Training data bias is used as a target scenario for FL with user selection. Prioritization is based on the distance between the newly trained local model and the global model of the previous round. To avoid excessive contribution by certain users, a counting mechanism is used to ensure fairness. Simulations with various datasets demonstrate that this method can rapidly achieve convergence similar to that of the centralized user selection approach.
Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.