亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this paper we present an approach for multi-robot shared autonomy that enables one operator to provide real-time corrections across two coordinated robots completing the same task in parallel. Sharing autonomy with multiple robots presents fundamental challenges. The human can only correct one robot at a time, and without coordination, the human may be left idle for long periods of time. Accordingly, we develop an approach that aligns the robot's learned motions to best utilize the human's expertise. Our key idea is to leverage Learning from Demonstration (LfD) and time warping to schedule the motions of the robots based on when they may require assistance. Our method uses variability in operator demonstrations to identify the types of corrections an operator might apply during shared autonomy, leverages flexibility in how quickly the task was performed in demonstrations to aid in scheduling, and iteratively estimates the likelihood of when corrections may be needed to ensure that only one robot is completing an action requiring assistance. Through a preliminary simulated study, we show that our method can decrease the overall time spent sanding by iteratively estimating the times when each robot could need assistance and generating an optimized schedule that allows the operator to provide corrections to each robot during these times.

相關內容

機(ji)器(qi)(qi)人(ren)(英(ying)語:Robot)包括一切模(mo)擬人(ren)類(lei)行為(wei)或(huo)思想與模(mo)擬其(qi)他生物的機(ji)械(如機(ji)器(qi)(qi)狗,機(ji)器(qi)(qi)貓(mao)等)。狹(xia)義上對機(ji)器(qi)(qi)人(ren)的定義還有(you)很多分類(lei)法及爭議,有(you)些電腦程序甚至也被稱為(wei)機(ji)器(qi)(qi)人(ren)。在當代(dai)工業中,機(ji)器(qi)(qi)人(ren)指能(neng)自(zi)動運行任務的人(ren)造機(ji)器(qi)(qi)設備,用以取代(dai)或(huo)協(xie)助(zhu)人(ren)類(lei)工作,一般會(hui)是機(ji)電設備,由計算機(ji)程序或(huo)是電子電路控(kong)制。

知識薈萃

精品(pin)入(ru)門和進(jin)階教程、論文和代(dai)碼(ma)整理等

更多

查看相(xiang)關VIP內(nei)容、論文(wen)、資訊等

Properly-calibrated sensors are the prerequisite for a dependable autonomous driving system. However, most prior methods focus on extrinsic calibration between sensors, and few focus on the misalignment between the sensors and the vehicle coordinate system. Existing targetless approaches rely on specific prior knowledge, such as driving routes and road features, to handle this misalignment. This work removes these limitations and proposes more general calibration methods for four commonly used sensors: Camera, LiDAR, GNSS/INS, and millimeter-wave Radar. By utilizing sensor-specific patterns: image feature, 3D LiDAR points, GNSS/INS solved pose, and radar speed, we design four corresponding methods to mainly calibrate the rotation from sensor to car during normal driving within minutes, composing a toolbox named SensorX2car. Real-world and simulated experiments demonstrate the practicality of our proposed methods. Meanwhile, the related codes have been open-sourced to benefit the community. To the best of our knowledge, SensorX2car is the first open-source sensor-to-car calibration toolbox. The code is available at //github.com/OpenCalib/SensorX2car.

In this work, we address the problem of 4D facial expressions generation. This is usually addressed by animating a neutral 3D face to reach an expression peak, and then get back to the neutral state. In the real world though, people show more complex expressions, and switch from one expression to another. We thus propose a new model that generates transitions between different expressions, and synthesizes long and composed 4D expressions. This involves three sub-problems: (i) modeling the temporal dynamics of expressions, (ii) learning transitions between them, and (iii) deforming a generic mesh. We propose to encode the temporal evolution of expressions using the motion of a set of 3D landmarks, that we learn to generate by training a manifold-valued GAN (Motion3DGAN). To allow the generation of composed expressions, this model accepts two labels encoding the starting and the ending expressions. The final sequence of meshes is generated by a Sparse2Dense mesh Decoder (S2D-Dec) that maps the landmark displacements to a dense, per-vertex displacement of a known mesh topology. By explicitly working with motion trajectories, the model is totally independent from the identity. Extensive experiments on five public datasets show that our proposed approach brings significant improvements with respect to previous solutions, while retaining good generalization to unseen data.

The availability of a large labeled dataset is a key requirement for applying deep learning methods to solve various computer vision tasks. In the context of understanding human activities, existing public datasets, while large in size, are often limited to a single RGB camera and provide only per-frame or per-clip action annotations. To enable richer analysis and understanding of human activities, we introduce IKEA ASM -- a three million frame, multi-view, furniture assembly video dataset that includes depth, atomic actions, object segmentation, and human pose. Additionally, we benchmark prominent methods for video action recognition, object segmentation and human pose estimation tasks on this challenging dataset. The dataset enables the development of holistic methods, which integrate multi-modal and multi-view data to better perform on these tasks.

We introduce RAMP, an open-source robotics benchmark inspired by real-world industrial assembly tasks. RAMP consists of beams that a robot must assemble into specified goal configurations using pegs as fasteners. As such it assesses planning and execution capabilities, and poses challenges in perception, reasoning, manipulation, diagnostics, fault recovery and goal parsing. RAMP has been designed to be accessible and extensible. Parts are either 3D printed or otherwise constructed from materials that are readily obtainable. The part design and detailed instructions are publicly available. In order to broaden community engagement, RAMP incorporates fixtures such as April Tags which enable researchers to focus on individual sub-tasks of the assembly challenge if desired. We provide a full digital twin as well as rudimentary baselines to enable rapid progress. Our vision is for RAMP to form the substrate for a community-driven endeavour that evolves as capability matures.

As people's aesthetic preferences for images are far from understood, image aesthetic assessment is a challenging artificial intelligence task. The range of factors underlying this task is almost unlimited, but we know that some aesthetic attributes affect those preferences. In this study, we present a multi-task convolutional neural network that takes into account these attributes. The proposed neural network jointly learns the attributes along with the overall aesthetic scores of images. This multi-task learning framework allows for effective generalization through the utilization of shared representations. Our experiments demonstrate that the proposed method outperforms the state-of-the-art approaches in predicting overall aesthetic scores for images in one benchmark of image aesthetics. We achieve near-human performance in terms of overall aesthetic scores when considering the Spearman's rank correlations. Moreover, our model pioneers the application of multi-tasking in another benchmark, serving as a new baseline for future research. Notably, our approach achieves this performance while using fewer parameters compared to existing multi-task neural networks in the literature, and consequently makes our method more efficient in terms of computational complexity.

Controlling marine vehicles in challenging environments is a complex task due to the presence of nonlinear hydrodynamics and uncertain external disturbances. Despite nonlinear model predictive control (MPC) showing potential in addressing these issues, its practical implementation is often constrained by computational limitations. In this paper, we propose an efficient controller for trajectory tracking of marine vehicles by employing a convex error-state MPC on the Lie group. By leveraging the inherent geometric properties of the Lie group, we can construct globally valid error dynamics and formulate a quadratic programming-based optimization problem. Our proposed MPC demonstrates effectiveness in trajectory tracking through extensive-numerical simulations, including scenarios involving ocean currents. Notably, our method substantially reduces computation time compared to nonlinear MPC, making it well-suited for real-time control applications with long prediction horizons or involving small marine vehicles.

Agile maneuvers are essential for robot-enabled complex tasks such as surgical procedures. Prior explorations on surgery autonomy are limited to feasibility study of completing a single task without systematically addressing generic manipulation safety across different tasks. We present an integrated planning and control framework for 6-DoF robotic instruments for pipeline automation of surgical tasks.We leverage the geometry of a robotic instrument and propose the nodal state space (NSS) to represent the robot state in SE(3) space. Each elementary robot motion could be encoded by regulation of the state parameters via a dynamical system. This theoretically ensures that every in-process trajectory is globally feasible and stably reached to an admissible target, and the controller is of closed-form without computing 6-DoF inverse kinematics. Then, to plan the motion steps reliably, we propose an interactive (instant) goal state of the robot that transforms manipulation planning through desired path constraints into a goal-varying manipulation (GVM) problem. We detail how GVM could adaptively and smoothly plan the procedure (could proceed or rewind the process as needed) based on on-the-fly situations under dynamic or disturbed environment. Finally, we extend the above policy to characterize complete pipelines of various surgical tasks. Simulations show that our framework could smoothly solve twisted maneuvers while avoiding collisions. Physical experiments using the da Vinci Research Kit (dVRK) validates the capability of automating individual tasks including tissue debridement, dissection, and wound suturing. The results confirm good task-level consistency and reliability compared to state-of-the-art automation algorithms.

In many visual systems, visual tracking often bases on RGB image sequences, in which some targets are invalid in low-light conditions, and tracking performance is thus affected significantly. Introducing other modalities such as depth and infrared data is an effective way to handle imaging limitations of individual sources, but multi-modal imaging platforms usually require elaborate designs and cannot be applied in many real-world applications at present. Near-infrared (NIR) imaging becomes an essential part of many surveillance cameras, whose imaging is switchable between RGB and NIR based on the light intensity. These two modalities are heterogeneous with very different visual properties and thus bring big challenges for visual tracking. However, existing works have not studied this challenging problem. In this work, we address the cross-modal object tracking problem and contribute a new video dataset, including 654 cross-modal image sequences with over 481K frames in total, and the average video length is more than 735 frames. To promote the research and development of cross-modal object tracking, we propose a new algorithm, which learns the modality-aware target representation to mitigate the appearance gap between RGB and NIR modalities in the tracking process. It is plug-and-play and could thus be flexibly embedded into different tracking frameworks. Extensive experiments on the dataset are conducted, and we demonstrate the effectiveness of the proposed algorithm in two representative tracking frameworks against 17 state-of-the-art tracking methods. We will release the dataset for free academic usage, dataset download link and code will be released soon.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

Object tracking is the cornerstone of many visual analytics systems. While considerable progress has been made in this area in recent years, robust, efficient, and accurate tracking in real-world video remains a challenge. In this paper, we present a hybrid tracker that leverages motion information from the compressed video stream and a general-purpose semantic object detector acting on decoded frames to construct a fast and efficient tracking engine suitable for a number of visual analytics applications. The proposed approach is compared with several well-known recent trackers on the OTB tracking dataset. The results indicate advantages of the proposed method in terms of speed and/or accuracy. Another advantage of the proposed method over most existing trackers is its simplicity and deployment efficiency, which stems from the fact that it reuses and re-purposes the resources and information that may already exist in the system for other reasons.

北京阿比特科技有限公司