亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, a relative transfer function (RTF)-vector-based method has been proposed to estimate the direction of arrival (DOA) of a target speaker for a binaural hearing aid setup, assuming the availability of external microphones. This method exploits the external microphones to estimate the RTF vector corresponding to the binaural hearing aid and constructs a one-dimensional spatial spectrum by comparing the estimated RTF vector against a database of anechoic prototype RTF vectors for several directions. In this paper we assume the availability of a calibrated array of external microphones, which is characterized by a second database of anechoic prototype RTF vectors. We propose a method, where the external microphones are not only exploited to estimate the RTF vector corresponding to the binaural hearing aid but also assist in estimating the DOA of the target speaker. Based on the estimated RTF vector for all microphones and both prototype databases, a two-dimensional spatial spectrum is constructed from which the DOA is estimated. Experimental results for a reverberant environment with diffuse-like noise show that assisted DOA estimation outperforms DOA estimation where the prototype database characterizing the array of external microphones is not used.

相關內容

We study the distributed minimum spanning tree (MST) problem, a fundamental problem in distributed computing. It is well-known that distributed MST can be solved in $\tilde{O}(D+\sqrt{n})$ rounds in the standard CONGEST model (where $n$ is the network size and $D$ is the network diameter) and this is essentially the best possible round complexity (up to logarithmic factors). However, in resource-constrained networks such as ad hoc wireless and sensor networks, nodes spending so much time can lead to significant spending of resources such as energy. Motivated by the above consideration, we study distributed algorithms for MST under the \emph{sleeping model} [Chatterjee et al., PODC 2020], a model for design and analysis of resource-efficient distributed algorithms. In the sleeping model, a node can be in one of two modes in any round -- \emph{sleeping} or \emph{awake} (unlike the traditional model where nodes are always awake). Only the rounds in which a node is \emph{awake} are counted, while \emph{sleeping} rounds are ignored. A node spends resources only in the awake rounds and hence the main goal is to minimize the \emph{awake complexity} of a distributed algorithm, the worst-case number of rounds any node is awake. We present deterministic and randomized distributed MST algorithms that have an \emph{optimal} awake complexity of $O(\log n)$ time with a matching lower bound. We also show that our randomized awake-optimal algorithm has essentially the best possible round complexity by presenting a lower bound of $\tilde{\Omega}(n)$ on the product of the awake and round complexity of any distributed algorithm (including randomized) that outputs an MST. To complement our trade-off lower bound, we present a parameterized family of distributed algorithms that gives an essentially optimal trade-off between the awake complexity and the round complexity.

The extensive deployment of probabilistic algorithms has radically changed our perspective on several well-established computational notions. Correctness is probably the most basic one. While a typical probabilistic program cannot be said to compute the correct result, we often have quite strong expectations about the frequency with which it should return certain outputs. In these cases, trust as a generalisation of correctness fares better. One way to understand it is to say that a probabilistic computational process is trustworthy if the frequency of its outputs is compliant with a probability distribution which models its expected behaviour. We present a formal computational framework that formalises this idea. In order to do so, we define a typed lambda-calculus that features operators for conducting experiments at runtime on probabilistic programs and for evaluating whether they compute outputs as determined by a target probability distribution. After proving some fundamental computational properties of the calculus, such as progress and termination, we define a static notion of confidence that allows to prove that our notion of trust behaves correctly with respect to the basic tenets of probability theory.

Aggregate measures of family planning are used to monitor demand for and usage of contraceptive methods in populations globally, for example as part of the FP2030 initiative. Family planning measures for low- and middle-income countries are typically based on data collected through cross-sectional household surveys. Recently proposed measures account for sexual activity through assessment of the distribution of time-between-sex (TBS) in the population of interest. In this paper, we propose a statistical approach to estimate the distribution of TBS using data typically available in low- and middle-income countries, while addressing two major challenges. The first challenge is that timing of sex information is typically limited to women's time-since-last-sex (TSLS) data collected in the cross-sectional survey. In our proposed approach, we adopt the current duration method to estimate the distribution of TBS using the available TSLS data, from which the frequency of sex at the population level can be derived. Furthermore, the observed TSLS data are subject to reporting issues because they can be reported in different units and may be rounded off. To apply the current duration approach and account for these data reporting issues, we develop a flexible Bayesian model, and provide a detailed technical description of the proposed modeling approach.

The Causality field aims to find systematic methods for uncovering cause-effect relationships. Such methods can find applications in many research fields, justifying a great interest in this domain. Machine Learning models have shown success in a large variety of tasks by extracting correlation patterns from high-dimensional data but still struggle when generalizing out of their initial distribution. As causal engines aim to learn mechanisms that are independent from a data distribution, combining Machine Learning with Causality has the potential to bring benefits to the two fields. In our work, we motivate this assumption and provide applications. We first perform an extensive overview of the theories and methods for Causality from different perspectives. We then provide a deeper look at the connections between Causality and Machine Learning and describe the challenges met by the two domains. We show the early attempts to bring the fields together and the possible perspectives for the future. We finish by providing a large variety of applications for techniques from Causality.

Language contact is a pervasive phenomenon reflected in the borrowing of words from donor to recipient languages. Most computational approaches to borrowing detection treat all languages under study as equally important, even though dominant languages have a stronger impact on heritage languages than vice versa. We test new methods for lexical borrowing detection in contact situations where dominant languages play an important role, applying two classical sequence comparison methods and one machine learning method to a sample of seven Latin American languages which have all borrowed extensively from Spanish. All methods perform well, with the supervised machine learning system outperforming the classical systems. A review of detection errors shows that borrowing detection could be substantially improved by taking into account donor words with divergent meanings from recipient words.

Antenna array calibration is necessary to maintain the high fidelity of beam patterns across a wide range of advanced antenna systems and to ensure channel reciprocity in time division duplexing schemes. Despite the continuous development in this area, most existing solutions are optimised for specific radio architectures, require standardised over-the-air data transmission, or serve as extensions of conventional methods. The diversity of communication protocols and hardware creates a problematic case, since this diversity requires to design or update the calibration procedures for each new advanced antenna system. In this study, we formulate antenna calibration in an alternative way, namely as a task of functional approximation, and address it via Bayesian machine learning. Our contributions are three-fold. Firstly, we define a parameter space, based on near-field measurements, that captures the underlying hardware impairments corresponding to each radiating element, their positional offsets, as well as the mutual coupling effects between antenna elements. Secondly, Gaussian process regression is used to form models from a sparse set of the aforementioned near-field data. Once deployed, the learned non-parametric models effectively serve to continuously transform the beamforming weights of the system, resulting in corrected beam patterns. Lastly, we demonstrate the viability of the described methodology for both digital and analog beamforming antenna arrays of different scales and discuss its further extension to support real-time operation with dynamic hardware impairments.

Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method.

In online experiments where the intervention is only exposed, or "triggered", for a small subset of the population, it is critical to use variance reduction techniques to estimate treatment effects with sufficient precision to inform business decisions. Trigger-dilute analysis is often used in these situations, and reduces the sampling variance of overall intent-to-treat (ITT) effects by an order of magnitude equal to the inverse of the triggering rate; for example, a triggering rate of $5\%$ corresponds to roughly a $20x$ reduction in variance. To apply trigger-dilute analysis, one needs to know experimental subjects' triggering counterfactual statuses, i.e., the counterfactual behavior of subjects under both treatment and control conditions. In this paper, we propose an unbiased ITT estimator with reduced variance applicable for experiments where the triggering counterfactual status is only observed in the treatment group. Our method is based on the efficiency augmentation idea of CUPED and draws upon identification frameworks from the principal stratification and instrumental variables literature. The unbiasedness of our estimation approach relies on a testable assumption that the augmentation term used for covariate adjustment equals zero in expectation. Unlike traditional covariate adjustment or principal score modeling approaches, our estimator can incorporate both pre-experiment and in-experiment observations. We demonstrate through a real-world experiment and simulations that our estimator can remain unbiased and achieve precision improvements as large as if triggering status were fully observed, and in some cases can even outperform trigger-dilute analysis.

Given a dataset on actions and resulting long-term rewards, a direct estimation approach fits value functions that minimize prediction error on the training data. Temporal difference learning (TD) methods instead fit value functions by minimizing the degree of temporal inconsistency between estimates made at successive time-steps. Focusing on finite state Markov chains, we provide a crisp asymptotic theory of the statistical advantages of this approach. First, we show that an intuitive inverse trajectory pooling coefficient completely characterizes the percent reduction in mean-squared error of value estimates. Depending on problem structure, the reduction could be enormous or nonexistent. Next, we prove that there can be dramatic improvements in estimates of the difference in value-to-go for two states: TD's errors are bounded in terms of a novel measure - the problem's trajectory crossing time - which can be much smaller than the problem's time horizon.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

北京阿比特科技有限公司