While semantic communication is expected to bring unprecedented communication efficiency in comparison to classical communication, many challenges must be resolved to realize its potential. In this work, we provide a realistic semantic network dubbed seq2seq-SC, which is compatible to 5G NR and can work with generalized text dataset utilizing pre-trained language model. We also utilize a performance metric (SBERT) which can accurately measure semantic similarity and show that seq2seq-SC achieves superior performance while extracting semantically meaningful information.
Integrated Sensing and Communication (ISAC) systems are recognised as one of the key ingredients of the sixth generation (6G) network. A challenging topic in ISAC is the design of a single waveform combining both communication and sensing functionalities on the same time-frequency-space resources, allowing to tune the performance of both with partial or full hardware sharing. This paper proposes a dual-domain waveform design approach that superposes onto the frequency-time (FT) domain both the legacy orthogonal frequency division multiplexing (OFDM) signal and a sensing one, purposely designed in the delay-Doppler domain. With a proper power downscaling of the sensing signal w.r.t. OFDM, it is possible to exceed regulatory bandwidth limitations proper of legacy multicarrier systems to increase the sensing performance while leaving communication substantially unaffected. Numerical and experimental results prove the effectiveness of the dual-domain waveform, notwithstanding a power abatement of at least 30 dB of the signal used for sensing compared to the one used for communication. The dual-domain ISAC waveform outperforms both OFDM and orthogonal time-frequency-space (OTFS) in terms of Cram\'{e}r-Rao bound on delay estimation (up to 20 dB), thanks to its superior resolution, with a negligible penalty on the achievable rate.
Handwritten Text Recognition (HTR) is more interesting and challenging than printed text due to uneven variations in the handwriting style of the writers, content, and time. HTR becomes more challenging for the Indic languages because of (i) multiple characters combined to form conjuncts which increase the number of characters of respective languages, and (ii) near to 100 unique basic Unicode characters in each Indic script. Recently, many recognition methods based on the encoder-decoder framework have been proposed to handle such problems. They still face many challenges, such as image blur and incomplete characters due to varying writing styles and ink density. We argue that most encoder-decoder methods are based on local visual features without explicit global semantic information. In this work, we enhance the performance of Indic handwritten text recognizers using global semantic information. We use a semantic module in an encoder-decoder framework for extracting global semantic information to recognize the Indic handwritten texts. The semantic information is used in both the encoder for supervision and the decoder for initialization. The semantic information is predicted from the word embedding of a pre-trained language model. Extensive experiments demonstrate that the proposed framework achieves state-of-the-art results on handwritten texts of ten Indic languages.
Semantic segmentation of Very High Resolution (VHR) remote sensing images is a fundamental task for many applications. However, large variations in the scales of objects in those VHR images pose a challenge for performing accurate semantic segmentation. Existing semantic segmentation networks are able to analyse an input image at up to four resizing scales, but this may be insufficient given the diversity of object scales. Therefore, Multi Scale (MS) test-time data augmentation is often used in practice to obtain more accurate segmentation results, which makes equal use of the segmentation results obtained at the different resizing scales. However, it was found in this study that different classes of objects had their preferred resizing scale for more accurate semantic segmentation. Based on this behaviour, a Stacking-Based Semantic Segmentation (SBSS) framework is proposed to improve the segmentation results by learning this behaviour, which contains a learnable Error Correction Module (ECM) for segmentation result fusion and an Error Correction Scheme (ECS) for computational complexity control. Two ECS, i.e., ECS-MS and ECS-SS, are proposed and investigated in this study. The Floating-point operations (Flops) required for ECS-MS and ECS-SS are similar to the commonly used MS test and the Single-Scale (SS) test, respectively. Extensive experiments on four datasets (i.e., Cityscapes, UAVid, LoveDA and Potsdam) show that SBSS is an effective and flexible framework. It achieved higher accuracy than MS when using ECS-MS, and similar accuracy as SS with a quarter of the memory footprint when using ECS-SS.
Pretraining neural networks with massive unlabeled datasets has become popular as it equips the deep models with a better prior to solve downstream tasks. However, this approach generally assumes that for downstream tasks, we have access to annotated data of sufficient size. In this work, we propose ALOE, a novel system for improving the data- and label-efficiency of non-semantic speech tasks with active learning (AL). ALOE uses pre-trained models in conjunction with active learning to label data incrementally and learns classifiers for downstream tasks, thereby mitigating the need to acquire labeled data beforehand. We demonstrate the effectiveness of ALOE on a wide range of tasks, uncertainty-based acquisition functions, and model architectures. Training a linear classifier on top of a frozen encoder with ALOE is shown to achieve performance similar to several baselines that utilize the entire labeled data.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary mismatch problem, which may block re-ranking stages from relevant documents at the very beginning. Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development. In this paper, we describe the current landscape of the first-stage retrieval models under a unified framework to clarify the connection between classical term-based retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we identify some open challenges and envision some future directions, with the hope of inspiring more researches on these important yet less investigated topics.
We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.
Extreme multi-label text classification (XMC) aims to tag each input text with the most relevant labels from an extremely large label set, such as those that arise in product categorization and e-commerce recommendation. Recently, pretrained language representation models such as BERT achieve remarkable state-of-the-art performance across a wide range of NLP tasks including sentence classification among small label sets (typically fewer than thousands). Indeed, there are several challenges in applying BERT to the XMC problem. The main challenges are: (i) the difficulty of capturing dependencies and correlations among labels, whose features may come from heterogeneous sources, and (ii) the tractability to scale to the extreme label setting as the model size can be very large and scale linearly with the size of the output space. To overcome these challenges, we propose X-BERT, the first feasible attempt to finetune BERT models for a scalable solution to the XMC problem. Specifically, X-BERT leverages both the label and document text to build label representations, which induces semantic label clusters in order to better model label dependencies. At the heart of X-BERT is finetuning BERT models to capture the contextual relations between input text and the induced label clusters. Finally, an ensemble of the different BERT models trained on heterogeneous label clusters leads to our best final model. Empirically, on a Wiki dataset with around 0.5 million labels, X-BERT achieves new state-of-the-art results where the precision@1 reaches 67:80%, a substantial improvement over 32.58%/60.91% of deep learning baseline fastText and competing XMC approach Parabel, respectively. This amounts to a 11.31% relative improvement over Parabel, which is indeed significant since the recent approach SLICE only has 5.53% relative improvement.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.