Integrated Sensing and Communication (ISAC) systems are recognised as one of the key ingredients of the sixth generation (6G) network. A challenging topic in ISAC is the design of a single waveform combining both communication and sensing functionalities on the same time-frequency-space resources, allowing to tune the performance of both with partial or full hardware sharing. This paper proposes a dual-domain waveform design approach that superposes onto the frequency-time (FT) domain both the legacy orthogonal frequency division multiplexing (OFDM) signal and a sensing one, purposely designed in the delay-Doppler domain. With a proper power downscaling of the sensing signal w.r.t. OFDM, it is possible to exceed regulatory bandwidth limitations proper of legacy multicarrier systems to increase the sensing performance while leaving communication substantially unaffected. Numerical and experimental results prove the effectiveness of the dual-domain waveform, notwithstanding a power abatement of at least 30 dB of the signal used for sensing compared to the one used for communication. The dual-domain ISAC waveform outperforms both OFDM and orthogonal time-frequency-space (OTFS) in terms of Cram\'{e}r-Rao bound on delay estimation (up to 20 dB), thanks to its superior resolution, with a negligible penalty on the achievable rate.
We present and analyze a parallel implementation of a parallel-in-time collocation method based on $\alpha$-circulant preconditioned Richardson iterations. While many papers explore this family of single-level, time-parallel "all-at-once" integrators from various perspectives, performance results of actual parallel runs are still scarce. This leaves a critical gap, because the efficiency and applicability of any parallel method heavily rely on the actual parallel performance, with only limited guidance from theoretical considerations. Further, challenges like selecting good parameters, finding suitable communication strategies, and performing a fair comparison to sequential time-stepping methods can be easily missed. In this paper, we first extend the original idea of these fixed point iterative approaches based on $\alpha$-circulant preconditioners to high-order collocation methods, adding yet another level of parallelization in time "across the method". We derive an adaptive strategy to select a new $\alpha$-circulant preconditioner for each iteration during runtime for balancing convergence rates, round-off errors, and inexactness of inner system solves for the individual time-steps. After addressing these more theoretical challenges, we present an open-source space- and time-parallel implementation and evaluate its performance for two different test problems.
Intelligent reflecting surface (IRS) has emerged as a promising technique to control wireless propagation environment for enhancing the communication performance cost-effectively. However, the rapidly time-varying channel in high-mobility communication scenarios such as vehicular communication renders it challenging to obtain the instantaneous channel state information (CSI) efficiently for IRS with a large number of reflecting elements. In this paper, we propose a new roadside IRS-aided vehicular communication system to tackle this challenge. Specifically, by exploiting the symmetrical deployment of IRSs with inter-laced equal intervals on both sides of the road and the cooperation among nearby IRS controllers, we propose a new two-stage channel estimation scheme with off-line and online training, respectively, to obtain the static/time-varying CSI required by the proposed low-complexity passive beamforming scheme efficiently. The proposed IRS beamforming and online channel estimation designs leverage the existing uplink pilots in wireless networks and do not require any change of the existing transmission protocol. Moreover, they can be implemented by each of IRS controllers independently, without the need of any real-time feedback from the user's serving BS. Simulation results show that the proposed designs can efficiently achieve the high IRS passive beamforming gain and thus significantly enhance the achievable communication throughput for high-speed vehicular communications.
In recent years, Field-Programmable Gate Arrays (FPGA) have evolved rapidly paving the way for a whole new range of computing paradigms. On the other hand, computer applications are evolving. There is a rising demand for a system that is general-purpose and yet has the processing abilities to accommodate current trends in application processing. This work proposes a design and implementation of a tightly-coupled FPGA-based dual-processor platform. We architect a platform that optimizes the utilization of FPGA resources and allows for the investigation of practical implementation issues such as cache design. The performance of the proposed prototype is then evaluated, as different configurations of a uniprocessor and a dual-processor system are studied and compared against each other and against published results for common industry-standard CPU platforms. The proposed implementation utilizes the Nios II 32-bit embedded soft-core processor architecture designed for the Altera Cyclone III family of FPGAs.
Algorithmic decision making has proliferated and now impacts our daily lives in both mundane and consequential ways. Machine learning practitioners make use of a myriad of algorithms for predictive models in applications as diverse as movie recommendations, medical diagnoses, and parole recommendations without delving into the reasons driving specific predictive decisions. Machine learning algorithms in such applications are often chosen for their superior performance, however popular choices such as random forest and deep neural networks fail to provide an interpretable understanding of the predictive model. In recent years, rule-based algorithms have been used to address this issue. Wang et al. (2017) presented an or-of-and (disjunctive normal form) based classification technique that allows for classification rule mining of a single class in a binary classification; this method is also shown to perform comparably to other modern algorithms. In this work, we extend this idea to provide classification rules for both classes simultaneously. That is, we provide a distinct set of rules for both positive and negative classes. In describing this approach, we also present a novel and complete taxonomy of classifications that clearly capture and quantify the inherent ambiguity in noisy binary classifications in the real world. We show that this approach leads to a more granular formulation of the likelihood model and a simulated-annealing based optimization achieves classification performance competitive with comparable techniques. We apply our method to synthetic as well as real world data sets to compare with other related methods that demonstrate the utility of our proposal.
Movable antenna (MA) is a promising technology to improve wireless communication performance by varying the antenna position in a given finite area at the transceivers to create more favorable channel conditions. In this paper, we investigate the MA-enhanced multiple-access channel (MAC) for the uplink transmission from multiple users each equipped with a single MA to a base station (BS) with a fixed-position antenna (FPA) array. A field-response based channel model is used to characterize the multi-path channel between the antenna array of the BS and each user's MA with a flexible position. To evaluate the MAC performance gain provided by MAs, we formulate an optimization problem for minimizing the total transmit power of users, subject to a minimum-achievable-rate requirement for each user, where the positions of MAs and the transmit powers of users, as well as the receive combining matrix at the BS are jointly optimized. To solve this non-convex optimization problem involving intricately coupled variables, we develop two algorithms based on zero-forcing (ZF) and minimum mean square error (MMSE) combining methods, respectively. Specifically, for each algorithm, the combining matrix of the BS and the total transmit power of users are expressed as a function of the MAs' position vectors, which are then optimized by using the gradient descent method in an iterative manner. It is shown that the proposed ZF-based and MMSE-based algorithms can converge to high-quality suboptimal solutions with low computational complexities. Simulation results demonstrate that the proposed solutions for MA-enhanced multiple access systems can significantly decrease the total transmit power of users as compared to conventional FPA systems under both perfect and imperfect field-response information.
Characterizing the sensing and communication performance tradeoff in integrated sensing and communication (ISAC) systems is challenging in the applications of learning-based human motion recognition. This is because of the large experimental datasets and the black-box nature of deep neural networks. This paper presents SDP3, a Simulation-Driven Performance Predictor and oPtimizer, which consists of SDP3 data simulator, SDP3 performance predictor and SDP3 performance optimizer. Specifically, the SDP3 data simulator generates vivid wireless sensing datasets in a virtual environment, the SDP3 performance predictor predicts the sensing performance based on the function regression method, and the SDP3 performance optimizer investigates the sensing and communication performance tradeoff analytically. It is shown that the simulated sensing dataset matches the experimental dataset very well in the motion recognition accuracy. By leveraging SDP3, it is found that the achievable region of recognition accuracy and communication throughput consists of a communication saturation zone, a sensing saturation zone, and a communication-sensing adversarial zone, of which the desired balanced performance for ISAC systems lies in the third one.
This paper examines the separation of wireless communication and radar signals, thereby guaranteeing cohabitation and acting as a panacea to spectrum sensing. First, considering that the channel impulse response was known by the receivers (communication and radar), we showed that the optimizing beamforming weights mitigate the interference caused by signals and improve the physical layer security (PLS) of the system. Furthermore, when the channel responses were unknown, we designed an interference filter as a low-complex noise and interference cancellation autoencoder. By mitigating the interference on the legitimate users, the PLS was guaranteed. Results showed that even for a low signal-to-noise ratio, the autoencoder produces low root-mean-square error (RMSE) values.
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a single-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, \ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.