In this paper, we revisit the problem of Differentially Private Stochastic Convex Optimization (DP-SCO) and provide excess population risks for some special classes of functions that are faster than the previous results of general convex and strongly convex functions. In the first part of the paper, we study the case where the population risk function satisfies the Tysbakov Noise Condition (TNC) with some parameter $\theta>1$. Specifically, we first show that under some mild assumptions on the loss functions, there is an algorithm whose output could achieve an upper bound of $\tilde{O}((\frac{1}{\sqrt{n}}+\frac{\sqrt{d\log \frac{1}{\delta}}}{n\epsilon})^\frac{\theta}{\theta-1})$ for $(\epsilon, \delta)$-DP when $\theta\geq 2$, here $n$ is the sample size and $d$ is the dimension of the space. Then we address the inefficiency issue, improve the upper bounds by $\text{Poly}(\log n)$ factors and extend to the case where $\theta\geq \bar{\theta}>1$ for some known $\bar{\theta}$. Next we show that the excess population risk of population functions satisfying TNC with parameter $\theta>1$ is always lower bounded by $\Omega((\frac{d}{n\epsilon})^\frac{\theta}{\theta-1}) $ and $\Omega((\frac{\sqrt{d\log \frac{1}{\delta}}}{n\epsilon})^\frac{\theta}{\theta-1})$ for $\epsilon$-DP and $(\epsilon, \delta)$-DP, respectively. In the second part, we focus on a special case where the population risk function is strongly convex. Unlike the previous studies, here we assume the loss function is {\em non-negative} and {\em the optimal value of population risk is sufficiently small}. With these additional assumptions, we propose a new method whose output could achieve an upper bound of $O(\frac{d\log\frac{1}{\delta}}{n^2\epsilon^2}+\frac{1}{n^{\tau}})$ for any $\tau\geq 1$ in $(\epsilon,\delta)$-DP model if the sample size $n$ is sufficiently large.
We propose and analyze a stochastic Newton algorithm for homogeneous distributed stochastic convex optimization, where each machine can calculate stochastic gradients of the same population objective, as well as stochastic Hessian-vector products (products of an independent unbiased estimator of the Hessian of the population objective with arbitrary vectors), with many such stochastic computations performed between rounds of communication. We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance, by proving convergence guarantees for quasi-self-concordant objectives (e.g., logistic regression), alongside empirical evidence.
We study the MARINA method of Gorbunov et al (2021) -- the current state-of-the-art distributed non-convex optimization method in terms of theoretical communication complexity. Theoretical superiority of this method can be largely attributed to two sources: the use of a carefully engineered biased stochastic gradient estimator, which leads to a reduction in the number of communication rounds, and the reliance on {\em independent} stochastic communication compression operators, which leads to a reduction in the number of transmitted bits within each communication round. In this paper we i) extend the theory of MARINA to support a much wider class of potentially {\em correlated} compressors, extending the reach of the method beyond the classical independent compressors setting, ii) show that a new quantity, for which we coin the name {\em Hessian variance}, allows us to significantly refine the original analysis of MARINA without any additional assumptions, and iii) identify a special class of correlated compressors based on the idea of {\em random permutations}, for which we coin the term Perm$K$, the use of which leads to $O(\sqrt{n})$ (resp. $O(1 + d/\sqrt{n})$) improvement in the theoretical communication complexity of MARINA in the low Hessian variance regime when $d\geq n$ (resp. $d \leq n$), where $n$ is the number of workers and $d$ is the number of parameters describing the model we are learning. We corroborate our theoretical results with carefully engineered synthetic experiments with minimizing the average of nonconvex quadratics, and on autoencoder training with the MNIST dataset.
We study common randomness generation problems where $n$ players aim to generate same sequences of random coin flips where some subsets of the players share an independent common coin which can be tossed multiple times, and there is a publicly seen blackboard through which the players communicate with each other. We provide a tight representation of the optimal communication rates via linear programming, and more importantly, propose explicit algorithms for the optimal distributed simulation for a wide class of hypergraphs. In particular, the optimal communication rate in complete hypergraphs is still achievable in sparser hypergraphs containing a path-connected cycle-free cluster of topologically connected components. Some key steps in analyzing the upper bounds rely on two different definitions of connectivity in hypergraphs, which may be of independent interest.
We study the problem of the nonparametric estimation for the density $\pi$ of the stationary distribution of a $d$-dimensional stochastic differential equation $(X_t)_{t \in [0, T]}$. From the continuous observation of the sampling path on $[0, T]$, we study the rate of estimation of $\pi(x)$ as $T$ goes to infinity. One finding is that, for $d \ge 3$, the rate of estimation depends on the smoothness $\beta = (\beta_1, ... , \beta_d)$ of $\pi$. In particular, having ordered the smoothness such that $\beta_1 \le ... \le \beta_d$, it depends on the fact that $\beta_2 < \beta_3$ or $\beta_2 = \beta_3$. We show that kernel density estimators achieve the rate $(\frac{\log T}{T})^\gamma$ in the first case and $(\frac{1}{T})^\gamma$ in the second, for an explicit exponent $\gamma$ depending on the dimension and on $\bar{\beta}_3$, the harmonic mean of the smoothness over the $d$ directions after having removed $\beta_1$ and $\beta_2$, the smallest ones. Moreover, we obtain a minimax lower bound on the $\mathbf{L}^2$-risk for the pointwise estimation with the same rates $(\frac{\log T}{T})^\gamma$ or $(\frac{1}{T})^\gamma$, depending on the value of $\beta_2$ and $\beta_3$.
We provide a control-theoretic perspective on optimal tensor algorithms for minimizing a convex function in a finite-dimensional Euclidean space. Given a function $\Phi: \mathbb{R}^d \rightarrow \mathbb{R}$ that is convex and twice continuously differentiable, we study a closed-loop control system that is governed by the operators $\nabla \Phi$ and $\nabla^2 \Phi$ together with a feedback control law $\lambda(\cdot)$ satisfying the algebraic equation $(\lambda(t))^p\|\nabla\Phi(x(t))\|^{p-1} = \theta$ for some $\theta \in (0, 1)$. Our first contribution is to prove the existence and uniqueness of a local solution to this system via the Banach fixed-point theorem. We present a simple yet nontrivial Lyapunov function that allows us to establish the existence and uniqueness of a global solution under certain regularity conditions and analyze the convergence properties of trajectories. The rate of convergence is $O(1/t^{(3p+1)/2})$ in terms of objective function gap and $O(1/t^{3p})$ in terms of squared gradient norm. Our second contribution is to provide two algorithmic frameworks obtained from discretization of our continuous-time system, one of which generalizes the large-step A-HPE framework and the other of which leads to a new optimal $p$-th order tensor algorithm. While our discrete-time analysis can be seen as a simplification and generalization of~\citet{Monteiro-2013-Accelerated}, it is largely motivated by the aforementioned continuous-time analysis, demonstrating the fundamental role that the feedback control plays in optimal acceleration and the clear advantage that the continuous-time perspective brings to algorithmic design. A highlight of our analysis is that we show that all of the $p$-th order optimal tensor algorithms that we discuss minimize the squared gradient norm at a rate of $O(k^{-3p})$, which complements the recent analysis.
In this paper, we derive improved a priori error estimates for families of hybridizable interior penalty discontinuous Galerkin (H-IP) methods using a variable penalty for second-order elliptic problems. The strategy is to use a penalization function of the form $\mathcal{O}(1/h^{1+\delta})$, where $h$ denotes the mesh size and $\delta$ is a user-dependent parameter. We then quantify its direct impact on the convergence analysis, namely, the (strong) consistency, discrete coercivity, and boundedness (with $h^{\delta}$-dependency), and we derive updated error estimates for both discrete energy- and $L^{2}$-norms. The originality of the error analysis relies specifically on the use of conforming interpolants of the exact solution. All theoretical results are supported by numerical evidence.
Besides the Laplace distribution and the Gaussian distribution, there are many more probability distributions which is not well-understood in terms of privacy-preserving property of a random draw -- one of which is the Dirichlet distribution. In this work, we study the inherent privacy of releasing a single draw from a Dirichlet posterior distribution. As a complement to the previous study that provides general theories on the differential privacy of posterior sampling from exponential families, this study focuses specifically on the Dirichlet posterior sampling and its privacy guarantees. With the notion of truncated concentrated differential privacy (tCDP), we are able to derive a simple privacy guarantee of the Dirichlet posterior sampling, which effectively allows us to analyze its utility in various settings. Specifically, we prove accuracy guarantees of private Multinomial-Dirichlet sampling, which is prevalent in Bayesian tasks, and private release of a normalized histogram. In addition, with our results, it is possible to make Bayesian reinforcement learning differentially private by modifying the Dirichlet sampling for state transition probabilities.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.