亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Transformer-based Large Language Models (LLMs) have shown exceptional language generation capabilities in response to text-based prompts. However, controlling the direction of generation via textual prompts has been challenging, especially with smaller models. In this work, we explore the use of Prompt Tuning to achieve controlled language generation. Generated text is steered using prompt embeddings, which are trained using a small language model, used as a discriminator. Moreover, we demonstrate that these prompt embeddings can be trained with a very small dataset, with as low as a few hundred training examples. Our method thus offers a data and parameter efficient solution towards controlling language model outputs. We carry out extensive evaluation on four datasets: SST-5 and Yelp (sentiment analysis), GYAFC (formality) and JIGSAW (toxic language). Finally, we demonstrate the efficacy of our method towards mitigating harmful, toxic, and biased text generated by language models.

相關內容

Compositional generalization is an important ability of language models and has many different manifestations. For data-to-text generation, previous research on this ability is limited to a single manifestation called Systematicity and lacks consideration of large language models (LLMs), which cannot fully cover practical application scenarios. In this work, we propose SPOR, a comprehensive and practical evaluation method for compositional generalization in data-to-text generation. SPOR includes four aspects of manifestations (Systematicity, Productivity, Order invariance, and Rule learnability) and allows high-quality evaluation without additional manual annotations based on existing datasets. We demonstrate SPOR on two different datasets and evaluate some existing language models including LLMs. We find that the models are deficient in various aspects of the evaluation and need further improvement. Our work shows the necessity for comprehensive research on different manifestations of compositional generalization in data-to-text generation and provides a framework for evaluation.

Large language models (LLMs) specializing in natural language generation (NLG) have recently started exhibiting promising capabilities across a variety of domains. However, gauging the trustworthiness of responses generated by LLMs remains an open challenge, with limited research on uncertainty quantification (UQ) for NLG. Furthermore, existing literature typically assumes white-box access to language models, which is becoming unrealistic either due to the closed-source nature of the latest LLMs or computational constraints. In this work, we investigate UQ in NLG for *black-box* LLMs. We first differentiate *uncertainty* vs *confidence*: the former refers to the ``dispersion'' of the potential predictions for a fixed input, and the latter refers to the confidence on a particular prediction/generation. We then propose and compare several confidence/uncertainty measures, applying them to *selective NLG* where unreliable results could either be ignored or yielded for further assessment. Experiments were carried out with several popular LLMs on question-answering datasets (for evaluation purposes). Results reveal that a simple measure for the semantic dispersion can be a reliable predictor of the quality of LLM responses, providing valuable insights for practitioners on uncertainty management when adopting LLMs. The code to replicate our experiments is available at //github.com/zlin7/UQ-NLG.

While extensively explored in text-based tasks, Named Entity Recognition (NER) remains largely neglected in spoken language understanding. Existing resources are limited to a single, English-only dataset. This paper addresses this gap by introducing MSNER, a freely available, multilingual speech corpus annotated with named entities. It provides annotations to the VoxPopuli dataset in four languages (Dutch, French, German, and Spanish). We have also releasing an efficient annotation tool that leverages automatic pre-annotations for faster manual refinement. This results in 590 and 15 hours of silver-annotated speech for training and validation, alongside a 17-hour, manually-annotated evaluation set. We further provide an analysis comparing silver and gold annotations. Finally, we present baseline NER models to stimulate further research on this newly available dataset.

Large language models (LLMs) have received considerable attention recently due to their outstanding comprehension and reasoning capabilities, leading to great progress in many fields. The advancement of LLM techniques also offers promising opportunities to automate many tasks in the telecommunication (telecom) field. After pre-training and fine-tuning, LLMs can perform diverse downstream tasks based on human instructions, paving the way to artificial general intelligence (AGI)-enabled 6G. Given the great potential of LLM technologies, this work aims to provide a comprehensive overview of LLM-enabled telecom networks. In particular, we first present LLM fundamentals, including model architecture, pre-training, fine-tuning, inference and utilization, model evaluation, and telecom deployment. Then, we introduce LLM-enabled key techniques and telecom applications in terms of generation, classification, optimization, and prediction problems. Specifically, the LLM-enabled generation applications include telecom domain knowledge, code, and network configuration generation. After that, the LLM-based classification applications involve network security, text, image, and traffic classification problems. Moreover, multiple LLM-enabled optimization techniques are introduced, such as automated reward function design for reinforcement learning and verbal reinforcement learning. Furthermore, for LLM-aided prediction problems, we discussed time-series prediction models and multi-modality prediction problems for telecom. Finally, we highlight the challenges and identify the future directions of LLM-enabled telecom networks.

Large language models (LLMs) have exhibited a strong promise in automatically generating executable code from natural language descriptions, particularly with interactive features that allow users to engage in the code-generation process by instructing the LLM with iterative feedback. However, existing interaction paradigms often assume that users have expert knowledge to debug source code and are not optimized for non-professional programmers' use. This raises challenges in making interactive code generation more accessible for individuals with varying levels of programming expertise. To tackle these challenges, we present IntelliExplain, which offers a novel human-LLM interaction paradigm to enhance non-professional programmers' experience by enabling them to interact with source code via natural language explanations. Users interact with IntelliExplain by providing natural language corrective feedback on errors they identify from the explanations. Feedback is used by the system to revise the code, until the user is satisfied with explanations by the system of the code. Our user study demonstrates that users with IntelliExplain achieve a significantly higher success rate 11.6% and 25.3% better than with vanilla GPT-3.5, while also requiring 39.0% and 15.6% less time in Text-to-SQL and Python code generation tasks, respectively.

Recent statements about the impressive capabilities of large language models (LLMs) are usually supported by evaluating on open-access benchmarks. Considering the vast size and wide-ranging sources of LLMs' training data, it could explicitly or implicitly include test data, leading to LLMs being more susceptible to data contamination. However, due to the opacity of training data, the black-box access of models, and the rapid growth of synthetic training data, detecting and mitigating data contamination for LLMs faces significant challenges. In this paper, we propose CDD, which stands for Contamination Detection via output Distribution for LLMs. CDD necessitates only the sampled texts to detect data contamination, by identifying the peakedness of LLM's output distribution. To mitigate the impact of data contamination in evaluation, we also present TED: Trustworthy Evaluation via output Distribution, based on the correction of LLM's output distribution. To facilitate this study, we introduce two benchmarks, i.e., DetCon and ComiEval, for data contamination detection and contamination mitigation evaluation tasks. Extensive experimental results show that CDD achieves the average relative improvements of 21.8\%-30.2\% over other contamination detection approaches in terms of Accuracy, F1 Score, and AUC metrics, and can effectively detect contamination caused by the variants of test data. TED significantly mitigates performance improvements up to 66.9\% attributed to data contamination across 24 settings and 21 contamination degrees. In real-world applications, we reveal that ChatGPT exhibits a high potential to suffer from data contamination on HumanEval benchmark.

Recent advances in large language models (LLMs) have promoted generative error correction (GER) for automatic speech recognition (ASR), which aims to predict the ground-truth transcription from the decoded N-best hypotheses. Thanks to the strong language generation ability of LLMs and rich information in the N-best list, GER shows great effectiveness in enhancing ASR results. However, it still suffers from two limitations: 1) LLMs are unaware of the source speech during GER, which may lead to results that are grammatically correct but violate the source speech content, 2) N-best hypotheses usually only vary in a few tokens, making it redundant to send all of them for GER, which could confuse LLM about which tokens to focus on and thus lead to increased miscorrection. In this paper, we propose ClozeGER, a new paradigm for ASR generative error correction. First, we introduce a multimodal LLM (i.e., SpeechGPT) to receive source speech as extra input to improve the fidelity of correction output. Then, we reformat GER as a cloze test with logits calibration to remove the input information redundancy and simplify GER with clear instructions. Experiments show that ClozeGER achieves a new breakthrough over vanilla GER on 9 popular ASR datasets.

Large language models (LLMs), such as ChatGPT, have received substantial attention due to their capabilities for understanding and generating human language. While there has been a burgeoning trend in research focusing on the employment of LLMs in supporting different medical tasks (e.g., enhancing clinical diagnostics and providing medical education), a review of these efforts, particularly their development, practical applications, and outcomes in medicine, remains scarce. Therefore, this review aims to provide a detailed overview of the development and deployment of LLMs in medicine, including the challenges and opportunities they face. In terms of development, we provide a detailed introduction to the principles of existing medical LLMs, including their basic model structures, number of parameters, and sources and scales of data used for model development. It serves as a guide for practitioners in developing medical LLMs tailored to their specific needs. In terms of deployment, we offer a comparison of the performance of different LLMs across various medical tasks, and further compare them with state-of-the-art lightweight models, aiming to provide an understanding of the advantages and limitations of LLMs in medicine. Overall, in this review, we address the following questions: 1) What are the practices for developing medical LLMs 2) How to measure the medical task performance of LLMs in a medical setting? 3) How have medical LLMs been employed in real-world practice? 4) What challenges arise from the use of medical LLMs? and 5) How to more effectively develop and deploy medical LLMs? By answering these questions, this review aims to provide insights into the opportunities for LLMs in medicine and serve as a practical resource. We also maintain a regularly updated list of practical guides on medical LLMs at: //github.com/AI-in-Health/MedLLMsPracticalGuide.

Large language models (LLMs) with retrieval augmented-generation (RAG) have been the optimal choice for scalable generative AI solutions in the recent past. However, the choice of use-cases that incorporate RAG with LLMs have been either generic or extremely domain specific, thereby questioning the scalability and generalizability of RAG-LLM approaches. In this work, we propose a unique LLM-based system where multiple LLMs can be invoked to enable data authentication, user query routing, data retrieval and custom prompting for question answering capabilities from data tables that are highly varying and large in size. Our system is tuned to extract information from Enterprise-level data products and furnish real time responses under 10 seconds. One prompt manages user-to-data authentication followed by three prompts to route, fetch data and generate a customizable prompt natural language responses. Additionally, we propose a five metric scoring module that detects and reports hallucinations in the LLM responses. Our proposed system and scoring metrics achieve >90% confidence scores across hundreds of user queries in the sustainability, financial health and social media domains. Extensions to the proposed extreme RAG architectures can enable heterogeneous source querying using LLMs.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

北京阿比特科技有限公司