Multimodal medical data fusion has emerged as a transformative approach in smart healthcare, enabling a comprehensive understanding of patient health and personalized treatment plans. In this paper, a journey from data, information, and knowledge to wisdom (DIKW) is explored through multimodal fusion for smart healthcare. A comprehensive review of multimodal medical data fusion focuses on the integration of various data modalities are presented. It explores different approaches such as Feature selection, Rule-based systems, Machine learning, Deep learning, and Natural Language Processing for fusing and analyzing multimodal data. The paper also highlights the challenges associated with multimodal fusion in healthcare. By synthesizing the reviewed frameworks and insights, a generic framework for multimodal medical data fusion is proposed while aligning with the DIKW mechanism. Moreover, it discusses future directions aligned with the four pillars of healthcare: Predictive, Preventive, Personalized, and Participatory approaches based on the DIKW and the generic framework. The components from this comprehensive survey form the foundation for the successful implementation of multimodal fusion in smart healthcare. The findings of this survey can guide researchers and practitioners in leveraging the power of multimodal fusion with the approaches to revolutionize healthcare and improve patient outcomes.
In public health applications, spatial data collected are often recorded at different spatial scales and over different correlated variables. Spatial change of support is a key inferential problem in these applications and have become standard in univariate settings; however, it is less standard in multivariate settings. There are several existing multivariate spatial models that can be easily combined with multiscale spatial approach to analyze multivariate multiscale spatial data. In this paper, we propose three new models from such combinations for bivariate multiscale spatial data in a Bayesian context. In particular, we extend spatial random effects models, multivariate conditional autoregressive models, and ordered hierarchical models through a multiscale spatial approach. We run simulation studies for the three models and compare them in terms of prediction performance and computational efficiency. We motivate our models through an analysis of 2015 Texas annual average percentage receiving two blood tests from the Dartmouth Atlas Project.
Remote medical diagnosis has emerged as a critical and indispensable technique in practical medical systems, where medical data are required to be efficiently compressed and transmitted for diagnosis by either professional doctors or intelligent diagnosis devices. In this process, a large amount of redundant content irrelevant to the diagnosis is subjected to high-fidelity coding, leading to unnecessary transmission costs. To mitigate this, we propose diagnosis-oriented medical image compression, a special semantic compression task designed for medical scenarios, targeting to reduce the compression cost without compromising the diagnosis accuracy. However, collecting sufficient medical data to optimize such a compression system is significantly expensive and challenging due to privacy issues and the lack of professional annotation. In this study, we propose DMIC, the first efficient transfer learning-based codec, for diagnosis-oriented medical image compression, which can be effectively optimized with only few-shot annotated medical examples, by reusing the knowledge in the existing reinforcement learning-based task-driven semantic coding framework, i.e., HRLVSC [1]. Concretely, we focus on tuning only the partial parameters of the policy network for bit allocation within HRLVSC, which enables it to adapt to the medical images. In this work, we validate our DMIC with the typical medical task, Coronary Artery Segmentation. Extensive experiments have demonstrated that our DMIC can achieve 47.594%BD-Rate savings compared to the HEVC anchor, by tuning only the A2C module (2.7% parameters) of the policy network with only 1 medical sample.
An important application scenario of precision agriculture is detecting and measuring crop health threats using sensors and data analysis techniques. However, the textual data are still under-explored among the existing solutions due to the lack of labelled data and fine-grained semantic resources. Recent research suggests that the increasing connectivity of farmers and the emergence of online farming communities make social media like Twitter a participatory platform for detecting unfamiliar plant health events if we can extract essential information from unstructured textual data. ChouBERT is a French pre-trained language model that can identify Tweets concerning observations of plant health issues with generalizability on unseen natural hazards. This paper tackles the lack of labelled data by further studying ChouBERT's know-how on token-level annotation tasks over small labeled sets.
Within the realm of privacy-preserving machine learning, empirical privacy defenses have been proposed as a solution to achieve satisfactory levels of training data privacy without a significant drop in model utility. Most existing defenses against membership inference attacks assume access to reference data, defined as an additional dataset coming from the same (or a similar) underlying distribution as training data. Despite the common use of reference data, previous works are notably reticent about defining and evaluating reference data privacy. As gains in model utility and/or training data privacy may come at the expense of reference data privacy, it is essential that all three aspects are duly considered. In this paper, we first examine the availability of reference data and its privacy treatment in previous works and demonstrate its necessity for fairly comparing defenses. Second, we propose a baseline defense that enables the utility-privacy tradeoff with respect to both training and reference data to be easily understood. Our method is formulated as an empirical risk minimization with a constraint on the generalization error, which, in practice, can be evaluated as a weighted empirical risk minimization (WERM) over the training and reference datasets. Although we conceived of WERM as a simple baseline, our experiments show that, surprisingly, it outperforms the most well-studied and current state-of-the-art empirical privacy defenses using reference data for nearly all relative privacy levels of reference and training data. Our investigation also reveals that these existing methods are unable to effectively trade off reference data privacy for model utility and/or training data privacy. Overall, our work highlights the need for a proper evaluation of the triad model utility / training data privacy / reference data privacy when comparing privacy defenses.
Data Augmentation through generating pseudo data has been proven effective in mitigating the challenge of data scarcity in the field of Grammatical Error Correction (GEC). Various augmentation strategies have been widely explored, most of which are motivated by two heuristics, i.e., increasing the distribution similarity and diversity of pseudo data. However, the underlying mechanism responsible for the effectiveness of these strategies remains poorly understood. In this paper, we aim to clarify how data augmentation improves GEC models. To this end, we introduce two interpretable and computationally efficient measures: Affinity and Diversity. Our findings indicate that an excellent GEC data augmentation strategy characterized by high Affinity and appropriate Diversity can better improve the performance of GEC models. Based on this observation, we propose MixEdit, a data augmentation approach that strategically and dynamically augments realistic data, without requiring extra monolingual corpora. To verify the correctness of our findings and the effectiveness of the proposed MixEdit, we conduct experiments on mainstream English and Chinese GEC datasets. The results show that MixEdit substantially improves GEC models and is complementary to traditional data augmentation methods.
Depression has emerged as a significant mental health concern due to a variety of factors, reflecting broader societal and individual challenges. Within the digital era, social media has become an important platform for individuals navigating through depression, enabling them to express their emotional and mental states through various mediums, notably music. Specifically, their music preferences, manifested through sharing practices, inadvertently offer a glimpse into their psychological and emotional landscapes. This work seeks to study the differences in music preferences between individuals diagnosed with depression and non-diagnosed individuals, exploring numerous facets of music, including musical features, lyrics, and musical networks. The music preferences of individuals with depression through music sharing on social media, reveal notable differences in musical features and topics and language use of lyrics compared to non-depressed individuals. We find the network information enhances understanding of the link between music listening patterns. The result highlights a potential echo-chamber effect, where depression individual's musical choices may inadvertently perpetuate depressive moods and emotions. In sum, this study underscores the significance of examining music's various aspects to grasp its relationship with mental health, offering insights for personalized music interventions and recommendation algorithms that could benefit individuals with depression.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.