亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Understanding how treatment effects vary on individual characteristics is critical in the contexts of personalized medicine, personalized advertising and policy design. When the characteristics are of practical interest are only a subset of full covariate, non-parametric estimation is often desirable; but few methods are available due to the computational difficult. Existing non-parametric methods such as the inverse probability weighting methods have limitations that hinder their use in many practical settings where the values of propensity scores are close to 0 or 1. We propose the propensity score regression (PSR) that allows the non-parametric estimation of the heterogeneous treatment effects in a wide context. PSR includes two non-parametric regressions in turn, where it first regresses on the propensity scores together with the characteristics of interest, to obtain an intermediate estimate; and then, regress the intermediate estimates on the characteristics of interest only. By including propensity scores as regressors in the non-parametric manner, PSR is capable of substantially easing the computational difficulty while remain (locally) insensitive to any value of propensity scores. We present several appealing properties of PSR, including the consistency and asymptotical normality, and in particular the existence of an explicit variance estimator, from which the analytical behaviour of PSR and its precision can be assessed. Simulation studies indicate that PSR outperform existing methods in varying settings with extreme values of propensity scores. We apply our method to the national 2009 flu survey (NHFS) data to investigate the effects of seasonal influenza vaccination and having paid sick leave across different age groups.

相關內容

A framework is presented for fitting inverse problem models via variational Bayes approximations. This methodology guarantees flexibility to statistical model specification for a broad range of applications, good accuracy performances and reduced model fitting times, when compared with standard Markov chain Monte Carlo methods. The message passing and factor graph fragment approach to variational Bayes we describe facilitates streamlined implementation of approximate inference algorithms and forms the basis to software development. Such approach allows for supple inclusion of numerous response distributions and penalizations into the inverse problem model. Even though our work is circumscribed to one- and two-dimensional response variables, we lay down an infrastructure where efficient algorithm updates based on nullifying weak interactions between variables can also be derived for inverse problems in higher dimensions. Image processing applications motivated by biomedical and archaeological problems are included as illustrations.

Flexibly modeling how an entire density changes with covariates is an important but challenging generalization of mean and quantile regression. While existing methods for density regression primarily consist of covariate-dependent discrete mixture models, we consider a continuous latent variable model in general covariate spaces, which we call DR-BART. The prior mapping the latent variable to the observed data is constructed via a novel application of Bayesian Additive Regression Trees (BART). We prove that the posterior induced by our model concentrates quickly around true generative functions that are sufficiently smooth. We also analyze the performance of DR-BART on a set of challenging simulated examples, where it outperforms various other methods for Bayesian density regression. Lastly, we apply DR-BART to two real datasets from educational testing and economics, to study student growth and predict returns to education. Our proposed sampler is efficient and allows one to take advantage of BART's flexibility in many applied settings where the entire distribution of the response is of primary interest. Furthermore, our scheme for splitting on latent variables within BART facilitates its future application to other classes of models that can be described via latent variables, such as those involving hierarchical or time series data.

This work considers variational Bayesian inference as an inexpensive and scalable alternative to a fully Bayesian approach in the context of sparsity-promoting priors. In particular, the priors considered arise from scale mixtures of Normal distributions with a generalized inverse Gaussian mixing distribution. This includes the variational Bayesian LASSO as an inexpensive and scalable alternative to the Bayesian LASSO introduced in [65]. It also includes a family of priors which more strongly promote sparsity. For linear models the method requires only the iterative solution of deterministic least squares problems. Furthermore, for p unknown covariates the method can be implemented exactly online with a cost of $O(p^3)$ in computation and $O(p^2)$ in memory per iteration -- in other words, the cost per iteration is independent of n, and in principle infinite data can be considered. For large $p$ an approximation is able to achieve promising results for a cost of $O(p)$ per iteration, in both computation and memory. Strategies for hyper-parameter tuning are also considered. The method is implemented for real and simulated data. It is shown that the performance in terms of variable selection and uncertainty quantification of the variational Bayesian LASSO can be comparable to the Bayesian LASSO for problems which are tractable with that method, and for a fraction of the cost. The present method comfortably handles $n = 65536$, $p = 131073$ on a laptop in less than 30 minutes, and $n = 10^5$, $p = 2.1 \times 10^6$ overnight.

Causal inference in a program evaluation setting faces the problem of external validity when the treatment effect in the target population is different from the treatment effect identified from the population of which the sample is representative. This paper focuses on a situation where such discrepancy arises by a stratified sampling design based on the individual treatment status and other characteristics. In such settings, the design probability is known from the sampling design but the target population depends on the underlying population share vector which is often unknown, and except for special cases, the treatment effect parameters are not identified. In this paper, we propose a method of constructing confidence sets that are valid for a given range of population shares. When a benchmark population share vector and a corresponding estimator of a treatment effect parameter are given, we develop a method to discover the scope of external validity with familywise error rate control. Finally, we derive an optimal sampling design which minimizes the semiparametric efficiency bound given a population share associated with a target population. We provide Monte Carlo simulation results and an empirical application to demonstrate the usefulness of our proposals.

Precision medicine is a rapidly expanding area of health research wherein patient level information is used to inform treatment decisions. A statistical framework helps to formalize the individualization of treatment decisions that characterize personalized management plans. Numerous methods have been proposed to estimate individualized treatment rules that optimize expected patient outcomes, many of which have desirable properties such as robustness to model misspecification. However, while individual data are essential in this context, there may be concerns about data confidentiality, particularly in multi-centre studies where data are shared externally. To address this issue, we compared two approaches to privacy preservation: (i) data pooling, which is a covariate microaggregation technique and (ii) distributed regression. These approaches were combined with the doubly robust yet user-friendly method of dynamic weighted ordinary least squares to estimate individualized treatment rules. In simulations, we extensively evaluated the performance of the methods in estimating the parameters of the decision rule under different assumptions. The results demonstrate that double robustness is not maintained in data pooling setting and that this can result in bias, whereas the distributed regression provides good performance. We illustrate the methods via an analysis of optimal Warfarin dosing using data from the International Warfarin Consortium.

Edge computing has revolutionized the world of mobile and wireless networks world thanks to its flexible, secure, and performing characteristics. Lately, we have witnessed the increasing use of it to make more performing the deployment of machine learning (ML) techniques such as federated learning (FL). FL was debuted to improve communication efficiency compared to conventional distributed machine learning (ML). The original FL assumes a central aggregation server to aggregate locally optimized parameters and might bring reliability and latency issues. In this paper, we conduct an in-depth study of strategies to replace this central server by a flying master that is dynamically selected based on the current participants and/or available resources at every FL round of optimization. Specifically, we compare different metrics to select this flying master and assess consensus algorithms to perform the selection. Our results demonstrate a significant reduction of runtime using our flying master FL framework compared to the original FL from measurements results conducted in our EdgeAI testbed and over real 5G networks using an operational edge testbed.

Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司