Recent innovations in digital technology offer significant opportunities for older adults to engage in meaningful activities. To investigate older adults' perceptions of using existing and emerging technologies for meaningful activities, we conducted three participatory design workshops and follow-up interviews with adults aged over 65. The workshops encompassed discussions on existing technologies for meaningful activities, demonstrations of emerging technologies such as VR, AR, and AI, and design activities including prototyping and storyboarding. Our findings show that while participants had diverse interpretations of meaningful activities, they sought to use technologies to support continuity in the pursuit of these activities. Specifically, participants highlighted the importance of safe aging at home, which provides a pathway for meaningful activities in later life. We further discuss participants' discerning attitudes when assessing the use of different technologies for meaningful activities and several values and attributes they desire when envisioning future technologies, including simplicity, positivity, proactivity, and integration.
Foundation models (FMs), such as Large Language Models (LLMs), have revolutionized software development by enabling new use cases and business models. We refer to software built using FMs as FMware. The unique properties of FMware (e.g., prompts, agents, and the need for orchestration), coupled with the intrinsic limitations of FMs (e.g., hallucination) lead to a completely new set of software engineering challenges. Based on our industrial experience, we identified 10 key SE4FMware challenges that have caused enterprise FMware development to be unproductive, costly, and risky. In this paper, we discuss these challenges in detail and state the path for innovation that we envision. Next, we present FMArts, which is our long-term effort towards creating a cradle-to-grave platform for the engineering of trustworthy FMware. Finally, we (i) show how the unique properties of FMArts enabled us to design and develop a complex FMware for a large customer in a timely manner and (ii) discuss the lessons that we learned in doing so. We hope that the disclosure of the aforementioned challenges and our associated efforts to tackle them will not only raise awareness but also promote deeper and further discussions, knowledge sharing, and innovative solutions across the software engineering discipline.
Large Language Models (LLMs) have demonstrated significant potential and effectiveness across multiple application domains. To assess the performance of mainstream LLMs in public security tasks, this study aims to construct a specialized evaluation benchmark tailored to the Chinese public security domain--CPSDbench. CPSDbench integrates datasets related to public security collected from real-world scenarios, supporting a comprehensive assessment of LLMs across four key dimensions: text classification, information extraction, question answering, and text generation. Furthermore, this study introduces a set of innovative evaluation metrics designed to more precisely quantify the efficacy of LLMs in executing tasks related to public security. Through the in-depth analysis and evaluation conducted in this research, we not only enhance our understanding of the performance strengths and limitations of existing models in addressing public security issues but also provide references for the future development of more accurate and customized LLM models targeted at applications in this field.
Autonomous systems, including generative AI, have been adopted faster than previous digital innovations. Their impact on society might as well be more profound, with a radical restructuring of the economy of knowledge and dramatic consequences for social and institutional balances. Different attitudes to control these systems have emerged rooted in the classical pillars of legal systems, proprietary rights, and social responsibility. We show how an illusion of control might be guiding governments and regulators, while autonomous systems might be driving us to inescapable delusion.
Neural Radiance Fields (NeRF), as a pioneering technique in computer vision, offer great potential to revolutionize medical imaging by synthesizing three-dimensional representations from the projected two-dimensional image data. However, they face unique challenges when applied to medical applications. This paper presents a comprehensive examination of applications of NeRFs in medical imaging, highlighting four imminent challenges, including fundamental imaging principles, inner structure requirement, object boundary definition, and color density significance. We discuss current methods on different organs and discuss related limitations. We also review several datasets and evaluation metrics and propose several promising directions for future research.
Recent research has demonstrated the importance of flexibly controlling for covariates in instrumental variables estimation. In this paper we study the finite sample and asymptotic properties of various weighting estimators of the local average treatment effect (LATE), motivated by Abadie's (2003) kappa theorem and offering the requisite flexibility relative to standard practice. We argue that two of the estimators under consideration, which are weight normalized, are generally preferable. Several other estimators, which are unnormalized, do not satisfy the properties of scale invariance with respect to the natural logarithm and translation invariance, thereby exhibiting sensitivity to the units of measurement when estimating the LATE in logs and the centering of the outcome variable more generally. We also demonstrate that, when noncompliance is one sided, certain weighting estimators have the advantage of being based on a denominator that is strictly greater than zero by construction. This is the case for only one of the two normalized estimators, and we recommend this estimator for wider use. We illustrate our findings with a simulation study and three empirical applications, which clearly document the sensitivity of unnormalized estimators to how the outcome variable is coded. We implement the proposed estimators in the Stata package kappalate.
We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.
This survey paper specially analyzed computer vision-based object detection challenges and solutions by different techniques. We mainly highlighted object detection by three different trending strategies, i.e., 1) domain adaptive deep learning-based approaches (discrepancy-based, Adversarial-based, Reconstruction-based, Hybrid). We examined general as well as tiny object detection-related challenges and offered solutions by historical and comparative analysis. In part 2) we mainly focused on tiny object detection techniques (multi-scale feature learning, Data augmentation, Training strategy (TS), Context-based detection, GAN-based detection). In part 3), To obtain knowledge-able findings, we discussed different object detection methods, i.e., convolutions and convolutional neural networks (CNN), pooling operations with trending types. Furthermore, we explained results with the help of some object detection algorithms, i.e., R-CNN, Fast R-CNN, Faster R-CNN, YOLO, and SSD, which are generally considered the base bone of CV, CNN, and OD. We performed comparative analysis on different datasets such as MS-COCO, PASCAL VOC07,12, and ImageNet to analyze results and present findings. At the end, we showed future directions with existing challenges of the field. In the future, OD methods and models can be analyzed for real-time object detection, tracking strategies.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.