Ensuring the safety, quality, and timely completion of construction projects is paramount, with construction inspections serving as a vital instrument towards these goals. Nevertheless, the predominantly manual approach of present-day inspections frequently results in inefficiencies and inadequate information management. Such methods often fall short of providing holistic, exhaustive assessments, consequently engendering regulatory oversights and potential safety hazards. To address this issue, this paper presents a novel framework named AutoRepo for automated generation of construction inspection reports. The unmanned vehicles efficiently perform construction inspections and collect scene information, while the multimodal large language models (LLMs) are leveraged to automatically generate the inspection reports. The framework was applied and tested on a real-world construction site, demonstrating its potential to expedite the inspection process, significantly reduce resource allocation, and produce high-quality, regulatory standard-compliant inspection reports. This research thus underscores the immense potential of multimodal large language models in revolutionizing construction inspection practices, signaling a significant leap forward towards a more efficient and safer construction management paradigm.
Intelligent robot is the ultimate goal in the robotics field. Existing works leverage learning-based or optimization-based methods to accomplish human-defined tasks. However, the challenge of enabling robots to explore various environments autonomously remains unresolved. In this work, we propose a framework named GExp, which enables robots to explore and learn autonomously without human intervention. To achieve this goal, we devise modules including self-exploration, knowledge-base-building, and close-loop feedback based on foundation models. Inspired by the way that infants interact with the world, GExp encourages robots to understand and explore the environment with a series of self-generated tasks. During the process of exploration, the robot will acquire skills from beneficial experiences that are useful in the future. GExp provides robots with the ability to solve complex tasks through self-exploration. GExp work is independent of prior interactive knowledge and human intervention, allowing it to adapt directly to different scenarios, unlike previous studies that provided in-context examples as few-shot learning. In addition, we propose a workflow of deploying the real-world robot system with self-learned skills as an embodied assistant.
Object recognition and object pose estimation in robotic grasping continue to be significant challenges, since building a labelled dataset can be time consuming and financially costly in terms of data collection and annotation. In this work, we propose a synthetic data generation method that minimizes human intervention and makes downstream image segmentation algorithms more robust by combining a generated synthetic dataset with a smaller real-world dataset (hybrid dataset). Annotation experiments show that the proposed synthetic scene generation can diminish labelling time dramatically. RGB image segmentation is trained with hybrid dataset and combined with depth information to produce pixel-to-point correspondence of individual segmented objects. The object to grasp is then determined by the confidence score of the segmentation algorithm. Pick-and-place experiments demonstrate that segmentation trained on our hybrid dataset (98.9%, 70%) outperforms the real dataset and a publicly available dataset by (6.7%, 18.8%) and (2.8%, 10%) in terms of labelling and grasping success rate, respectively. Supplementary material is available at //sites.google.com/view/synthetic-dataset-generation.
In the field of autonomous driving, online high-definition (HD) map reconstruction is crucial for planning tasks. Recent research has developed several high-performance HD map reconstruction models to meet this necessity. However, the point sequences within the instance vectors may be jittery or jagged due to prediction bias, which can impact subsequent tasks. Therefore, this paper proposes the Anti-disturbance Map reconstruction framework (ADMap). To mitigate point-order jitter, the framework consists of three modules: Multi-Scale Perception Neck, Instance Interactive Attention (IIA), and Vector Direction Difference Loss (VDDL). By exploring the point-order relationships between and within instances in a cascading manner, the model can monitor the point-order prediction process more effectively. ADMap achieves state-of-the-art performance on the nuScenes and Argoverse2 datasets. Extensive results demonstrate its ability to produce stable and reliable map elements in complex and changing driving scenarios. Code and more demos are available at //github.com/hht1996ok/ADMap.
We propose a framework where Fer and Wilcox expansions for the solution of differential equations are derived from two particular choices for the initial transformation that seeds the product expansion. In this scheme intermediate expansions can also be envisaged. Recurrence formulas are developed. A new lower bound for the convergence of the Wilcox expansion is provided as well as some applications of the results. In particular, two examples are worked out up to high order of approximation to illustrate the behavior of the Wilcox expansion.
Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.
Recently, addressing spatial confounding has become a major topic in spatial statistics. However, the literature has provided conflicting definitions, and many proposed definitions do not address the issue of confounding as it is understood in causal inference. We define spatial confounding as the existence of an unmeasured causal confounder with a spatial structure. We present a causal inference framework for nonparametric identification of the causal effect of a continuous exposure on an outcome in the presence of spatial confounding. We propose double machine learning (DML), a procedure in which flexible models are used to regress both the exposure and outcome variables on confounders to arrive at a causal estimator with favorable robustness properties and convergence rates, and we prove that this approach is consistent and asymptotically normal under spatial dependence. As far as we are aware, this is the first approach to spatial confounding that does not rely on restrictive parametric assumptions (such as linearity, effect homogeneity, or Gaussianity) for both identification and estimation. We demonstrate the advantages of the DML approach analytically and in simulations. We apply our methods and reasoning to a study of the effect of fine particulate matter exposure during pregnancy on birthweight in California.
A crucial challenge for solving problems in conflict research is in leveraging the semi-supervised nature of the data that arise. Observed response data such as counts of battle deaths over time indicate latent processes of interest such as intensity and duration of conflicts, but defining and labeling instances of these unobserved processes requires nuance and imprecision. The availability of such labels, however, would make it possible to study the effect of intervention-related predictors - such as ceasefires - directly on conflict dynamics (e.g., latent intensity) rather than through an intermediate proxy like observed counts of battle deaths. Motivated by this problem and the new availability of the ETH-PRIO Civil Conflict Ceasefires data set, we propose a Bayesian autoregressive (AR) hidden Markov model (HMM) framework as a sufficiently flexible machine learning approach for semi-supervised regime labeling with uncertainty quantification. We motivate our approach by illustrating the way it can be used to study the role that ceasefires play in shaping conflict dynamics. This ceasefires data set is the first systematic and globally comprehensive data on ceasefires, and our work is the first to analyze this new data and to explore the effect of ceasefires on conflict dynamics in a comprehensive and cross-country manner.
In this article, we propose an interval constraint programming method for globally solving catalog-based categorical optimization problems. It supports catalogs of arbitrary size and properties of arbitrary dimension, and does not require any modeling effort from the user. A novel catalog-based contractor (or filtering operator) guarantees consistency between the categorical properties and the existing catalog items. This results in an intuitive and generic approach that is exact, rigorous (robust to roundoff errors) and can be easily implemented in an off-the-shelf interval-based continuous solver that interleaves branching and constraint propagation. We demonstrate the validity of the approach on a numerical problem in which a categorical variable is described by a two-dimensional property space. A Julia prototype is available as open-source software under the MIT license at //github.com/cvanaret/CateGOrical.jl
The enhancement of 3D object detection is pivotal for precise environmental perception and improved task execution capabilities in autonomous driving. LiDAR point clouds, offering accurate depth information, serve as a crucial information for this purpose. Our study focuses on key challenges in 3D target detection. To tackle the challenge of expanding the receptive field of a 3D convolutional kernel, we introduce the Dynamic Feature Fusion Module (DFFM). This module achieves adaptive expansion of the 3D convolutional kernel's receptive field, balancing the expansion with acceptable computational loads. This innovation reduces operations, expands the receptive field, and allows the model to dynamically adjust to different object requirements. Simultaneously, we identify redundant information in 3D features. Employing the Feature Selection Module (FSM) quantitatively evaluates and eliminates non-important features, achieving the separation of output box fitting and feature extraction. This innovation enables the detector to focus on critical features, resulting in model compression, reduced computational burden, and minimized candidate frame interference. Extensive experiments confirm that both DFFM and FSM not only enhance current benchmarks, particularly in small target detection, but also accelerate network performance. Importantly, these modules exhibit effective complementarity.
Semantically rich descriptions of manufacturing machines, offered in a machine-interpretable code, can provide interesting benefits in Industry 4.0 scenarios. However, the lack of that type of descriptions is evident. In this paper we present the development effort made to build an ontology, called ExtruOnt, for describing a type of manufacturing machine, more precisely, a type that performs an extrusion process (extruder). Although the scope of the ontology is restricted to a concrete domain, it could be used as a model for the development of other ontologies for describing manufacturing machines in Industry 4.0 scenarios. The terms of the ExtruOnt ontology provide different types of information related with an extruder, which are reflected in distinct modules that constitute the ontology. Thus, it contains classes and properties for expressing descriptions about components of an extruder, spatial connections, features, and 3D representations of those components, and finally the sensors used to capture indicators about the performance of this type of machine. The ontology development process has been carried out in close collaboration with domain experts.