亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Agile quadrotor flight relies on rapidly planning and accurately tracking time-optimal trajectories, a technology critical to their application in the wild. However, the computational burden of computing time-optimal trajectories based on the full quadrotor dynamics (typically on the order of minutes or even hours) can hinder its ability to respond quickly to changing scenarios. Additionally, modeling errors and external disturbances can lead to deviations from the desired trajectory during tracking in real time. This letter proposes a novel approach to computing time-optimal trajectories, by fixing the nodes with waypoint constraints and adopting separate sampling intervals for trajectories between waypoints, which significantly accelerates trajectory planning. Furthermore, the planned paths are tracked via a time-adaptive model predictive control scheme whose allocated tracking time can be adaptively adjusted on-the-fly, therefore enhancing the tracking accuracy and robustness. We evaluate our approach through simulations and experimentally validate its performance in dynamic waypoint scenarios for time-optimal trajectory replanning and trajectory tracking.

相關內容

Reinforcement learning (RL) has shown promise in creating robust policies for robotics tasks. However, contemporary RL algorithms are data-hungry, often requiring billions of environment transitions to train successful policies. This necessitates the use of fast and highly-parallelizable simulators. In addition to speed, such simulators need to model the physics of the robots and their interaction with the environment to a level acceptable for transferring policies learned in simulation to reality. We present QuadSwarm, a fast, reliable simulator for research in single and multi-robot RL for quadrotors that addresses both issues. QuadSwarm, with fast forward-dynamics propagation decoupled from rendering, is designed to be highly parallelizable such that throughput scales linearly with additional compute. It provides multiple components tailored toward multi-robot RL, including diverse training scenarios, and provides domain randomization to facilitate the development and sim2real transfer of multi-quadrotor control policies. Initial experiments suggest that QuadSwarm achieves over 48,500 simulation samples per second (SPS) on a single quadrotor and over 62,000 SPS on eight quadrotors on a 16-core CPU. The code can be found in //github.com/Zhehui-Huang/quad-swarm-rl.

This paper presents a sampling-based motion planning framework that leverages the geometry of obstacles in a workspace as well as prior experiences from motion planning problems. Previous studies have demonstrated the benefits of utilizing prior solutions to motion planning problems for improving planning efficiency. However, particularly for high-dimensional systems, achieving high performance across randomized environments remains a technical challenge for experience-based approaches due to the substantial variance between each query. To address this challenge, we propose a novel approach that involves decoupling the problem into subproblems through algorithmic workspace decomposition and graph search. Additionally, we capitalize on prior experience within each subproblem. This approach effectively reduces the variance across different problems, leading to improved performance for experience-based planners. To validate the effectiveness of our framework, we conduct experiments using 2D and 6D robotic systems. The experimental results demonstrate that our framework outperforms existing algorithms in terms of planning time and cost.

Modern HPC systems are increasingly relying on greater core counts and wider vector registers. Thus, applications need to be adapted to fully utilize these hardware capabilities. One class of applications that can benefit from this increase in parallelism are molecular dynamics simulations. In this paper, we describe our efforts at modernizing the ESPResSo++ molecular dynamics simulation package by restructuring its particle data layout for efficient memory accesses and applying vectorization techniques to benefit the calculation of short-range non-bonded forces, which results in an overall three times speedup and serves as a baseline for further optimizations. We also implement fine-grained parallelism for multi-core CPUs through HPX, a C++ runtime system which uses lightweight threads and an asynchronous many-task approach to maximize concurrency. Our goal is to evaluate the performance of an HPX-based approach compared to the bulk-synchronous MPI-based implementation. This requires the introduction of an additional layer to the domain decomposition scheme that defines the task granularity. On spatially inhomogeneous systems, which impose a corresponding load-imbalance in traditional MPI-based approaches, we demonstrate that by choosing an optimal task size, the efficient work-stealing mechanisms of HPX can overcome the overhead of communication resulting in an overall 1.4 times speedup compared to the baseline MPI version.

Despite recent progress improving the efficiency and quality of motion planning, planning collision-free and dynamically-feasible trajectories in partially-mapped environments remains challenging, since constantly replanning as unseen obstacles are revealed during navigation both incurs significant computational expense and can introduce problematic oscillatory behavior. To improve the quality of motion planning in partial maps, this paper develops a framework that augments sampling-based motion planning to leverage a high-level discrete layer and prior solutions to guide motion-tree expansion during replanning, affording both (i) faster planning and (ii) improved solution coherence. Our framework shows significant improvements in runtime and solution distance when compared with other sampling-based motion planners.

Path planning for multiple tethered robots is a challenging problem due to the complex interactions among the cables and the possibility of severe entanglements. Previous works on this problem either consider idealistic cable models or provide no guarantee for entanglement-free paths. In this work, we present a new approach to address this problem using the theory of braids. By establishing a topological equivalence between the physical cables and the space-time trajectories of the robots, and identifying particular braid patterns that emerge from the entangled trajectories, we obtain the key finding that all complex entanglements stem from a finite number of interaction patterns between 2 or 3 robots. Hence, non-entanglement can be guaranteed by avoiding these interaction patterns in the trajectories of the robots. Based on this finding, we present a graph search algorithm using the permutation grid to efficiently search for a feasible topology of paths and reject braid patterns that result in an entanglement. We demonstrate that the proposed algorithm can achieve 100% goal-reaching capability without entanglement for up to 10 drones with a slack cable model in a high-fidelity simulation platform. The practicality of the proposed approach is verified using three small tethered UAVs in indoor flight experiments.

End-to-end deep learning approaches has been proven to be efficient in autonomous driving and robotics. By using deep learning techniques for decision-making, those systems are often referred to as a black box, and the result is driven by data. In this paper, we propose PaaS (Planning as a Service), a vanilla module to generate local trajectory planning for autonomous driving in CARLA simulation. Our method is submitted in International CARLA Autonomous Driving Leaderboard (CADL), which is a platform to evaluate the driving proficiency of autonomous agents in realistic traffic scenarios. Our approach focuses on reactive planning in Frenet frame under complex urban street's constraints and driver's comfort. The planner generates a collection of feasible trajectories, leveraging heuristic cost functions with controllable driving style factor to choose the optimal-control path that satisfies safe travelling criteria. PaaS can provide sufficient solutions to handle well under challenging traffic situations in CADL. As the strict evaluation in CADL Map Track, our approach ranked 3rd out of 9 submissions regarding the measure of driving score. However, with the focus on minimizing the risk of maneuver and ensuring passenger safety, our figures corresponding to infraction penalty dominate the two leading submissions for 20 percent.

Communication by binary and sparse spikes is a key factor for the energy efficiency of biological brains. However, training deep spiking neural networks (SNNs) with backpropagation is harder than with artificial neural networks (ANNs), which is puzzling given that recent theoretical results provide exact mapping algorithms from ReLU to time-to-first-spike (TTFS) SNNs. Building upon these results, we analyze in theory and in simulation the learning dynamics of TTFS-SNNs. Our analysis highlights that even when an SNN can be mapped exactly to a ReLU network, it cannot always be robustly trained by gradient descent. The reason for that is the emergence of a specific instance of the vanishing-or-exploding gradient problem leading to a bias in the gradient descent trajectory in comparison with the equivalent ANN. After identifying this issue we derive a generic solution for the network initialization and SNN parameterization which guarantees that the SNN can be trained as robustly as its ANN counterpart. Our theoretical findings are illustrated in practice on image classification datasets. Our method achieves the same accuracy as deep ConvNets on CIFAR10 and enables fine-tuning on the much larger PLACES365 dataset without loss of accuracy compared to the ANN. We argue that the combined perspective of conversion and fine-tuning with robust gradient descent in SNN will be decisive to optimize SNNs for hardware implementations needing low latency and resilience to noise and quantization.

We implement full, three-dimensional constrained mixture theory for vascular growth and remodeling into a finite element fluid-structure interaction (FSI) solver. The resulting "fluid-solid-growth" (FSG) solver allows long term, patient-specific predictions of changing hemodynamics, vessel wall morphology, tissue composition, and material properties. This extension from short term (FSI) to long term (FSG) simulations increases clinical relevance by enabling mechanobioloigcally-dependent studies of disease progression in complex domains.

Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications. With the growing use of unmanned aerial systems (UASs), MOT methods for aerial surveillance is in high demand. Application of MOT in UAS presents specific challenges such as moving sensor, changing zoom levels, dynamic background, illumination changes, obscurations and small objects. In this work, we present a robust object tracking architecture aimed to accommodate for the noise in real-time situations. We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space. DeepEKF utilizes a learned image embedding along with an attention mechanism trained to weight the importance of areas in an image to predict future states. For the visual scoring, we experiment with different similarity measures to calculate distance based on entity appearances, including a convolutional neural network (CNN) encoder, pre-trained using Siamese networks. In initial evaluation experiments, we show that our method, combining scoring structure of the kinematic and visual models within a MHT framework, has improved performance especially in edge cases where entity motion is unpredictable, or the data presents frames with significant gaps.

Recent advances in sensor and mobile devices have enabled an unprecedented increase in the availability and collection of urban trajectory data, thus increasing the demand for more efficient ways to manage and analyze the data being produced. In this survey, we comprehensively review recent research trends in trajectory data management, ranging from trajectory pre-processing, storage, common trajectory analytic tools, such as querying spatial-only and spatial-textual trajectory data, and trajectory clustering. We also explore four closely related analytical tasks commonly used with trajectory data in interactive or real-time processing. Deep trajectory learning is also reviewed for the first time. Finally, we outline the essential qualities that a trajectory management system should possess in order to maximize flexibility.

北京阿比特科技有限公司