亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Meeting summarization has emerged as a promising technique for providing users with condensed summaries. However, existing work has focused on training models on centralized data, neglecting real-world scenarios where meeting data are infeasible to collect centrally, due to their sensitive nature. This gap motivates us to explore federated learning for meeting summarization. Two critical challenges impede progress. First, state-of-the-art summarizers are based on parameter-heavy pre-trained models. Exchanging such a model's parameters across clients imposes large bandwidth costs. Second, as real-world meeting data belong to various domains and are distributed across clients, they are instances of non-identically and independently distributed (non-IID). IID assumptions do not hold, which changes which forms of learning algorithms best apply. To address this, we propose Adapter-based Federated Selective Knowledge Distillation (AdaFedSelecKD) for training performant client models. Specifically, we develop an adapter-based summarization model where two adapters cooperatively facilitate learning using fewer parameters to reduce communication costs. Then, we devise a selective knowledge distillation strategy, assisting clients in robustly handling domain-focused modelling on their own data, while leveraging global parameters based on non-IID data. Extensive experiments on the QMSum benchmark demonstrate AdaFedSelecKD can achieve comparable performance with powerful centralized training methods, and shows its generalizability and robustness.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

Neural ordinary differential equations (ODEs) are widely recognized as the standard for modeling physical mechanisms, which help to perform approximate inference in unknown physical or biological environments. In partially observable (PO) environments, how to infer unseen information from raw observations puzzled the agents. By using a recurrent policy with a compact context, context-based reinforcement learning provides a flexible way to extract unobservable information from historical transitions. To help the agent extract more dynamics-related information, we present a novel ODE-based recurrent model combines with model-free reinforcement learning (RL) framework to solve partially observable Markov decision processes (POMDPs). We experimentally demonstrate the efficacy of our methods across various PO continuous control and meta-RL tasks. Furthermore, our experiments illustrate that our method is robust against irregular observations, owing to the ability of ODEs to model irregularly-sampled time series.

The concept of cyber deception has been receiving emerging attention. The development of cyber defensive deception techniques requires interdisciplinary work, among which cognitive science plays an important role. In this work, we adopt a signaling game framework between a defender and a human agent to develop a cyber defensive deception protocol that takes advantage of the cognitive biases of human decision-making using quantum decision theory to combat insider attacks (IA). The defender deceives an inside human attacker by luring him to access decoy sensors via generators producing perceptions of classical signals to manipulate the human attacker's psychological state of mind. Our results reveal that even without changing the classical traffic data, strategically designed generators can result in a worse performance for defending against insider attackers in identifying decoys than the ones in the deceptive scheme without generators, which generate random information based on input signals. The proposed framework leads to fundamental theories in designing more effective signaling schemes.

The Internet inter-domain routing system is vulnerable. On the control plane, the de facto Border Gateway Protocol (BGP) does not have built-in mechanisms to authenticate routing announcements, so an adversary can announce virtually arbitrary paths to hijack network traffic; on the data plane, it is difficult to ensure that actual forwarding path complies with the control plane decisions. The community has proposed significant research to secure the routing system. Yet, existing secure BGP protocols (e.g., BGPsec) are not incrementally deployable, and existing path authorization protocols are not compatible with the current Internet routing infrastructure. In this paper, we propose FC-BGP, the first secure Internet inter-domain routing system that can simultaneously authenticate BGP announcements and validate data plane forwarding in an efficient and incrementally-deployable manner. FC-BGP is built upon a novel primitive, name Forwarding Commitment, to certify an AS's routing intent on its directly connected hops. We analyze the security benefits of FC-BGP in the Internet at different deployment rates. Further, we implement a prototype of FC-BGP and extensively evaluate it over a large-scale overlay network with 100 virtual machines deployed globally. The results demonstrate that FC-BGP saves roughly 55% of the overhead required to validate BGP announcements compared with BGPsec, and meanwhile FC-BGP introduces a small overhead for building a globally-consistent view on the desirable forwarding paths.

Sequence modeling approaches have shown promising results in robot imitation learning. Recently, diffusion models have been adopted for behavioral cloning in a sequence modeling fashion, benefiting from their exceptional capabilities in modeling complex data distributions. The standard diffusion-based policy iteratively generates action sequences from random noise conditioned on the input states. Nonetheless, the model for diffusion policy can be further improved in terms of visual representations. In this work, we propose Crossway Diffusion, a simple yet effective method to enhance diffusion-based visuomotor policy learning via a carefully designed state decoder and an auxiliary self-supervised learning (SSL) objective. The state decoder reconstructs raw image pixels and other state information from the intermediate representations of the reverse diffusion process. The whole model is jointly optimized by the SSL objective and the original diffusion loss. Our experiments demonstrate the effectiveness of Crossway Diffusion in various simulated and real-world robot tasks, confirming its consistent advantages over the standard diffusion-based policy and substantial improvements over the baselines.

Reconfigurable intelligent surfaces (RISs) have received extensive concern to improve the performance of wireless communication systems. In this paper, a subarray-based scheme is investigated in terms of its effects on ergodic spectral efficiency (SE) and energy efficiency (EE) in RIS-assisted systems. In this scheme, the adjacent elements divided into a subarray are controlled by one signal and share the same reflection coefficient. An upper bound of ergodic SE is derived and an optimal phase shift design is proposed for the subarray-based RIS. Based on the upper bound and optimal design, we obtain the maximum of the upper bound. In particular, we analytically evaluate the effect of the subarray-based RIS on EE since it reduces SE and power consumption simultaneously. Numerical results verify the tightness of the upper bound, demonstrate the effectiveness of the optimal phase shift design for the subarray-based RIS, and reveal the effects of the subarray-based scheme on SE and EE.

The main design principles in computer architecture have recently shifted from a monolithic scaling-driven approach to the development of heterogeneous architectures that tightly co-integrate multiple specialized processor and memory chiplets. In such data-hungry multi-chip architectures, current Networks-in-Package (NiPs) may not be enough to cater to their heterogeneous and fast-changing communication demands. This position paper makes the case for wireless in-package nanonetworking as the enabler of efficient and versatile wired-wireless interconnect fabrics for massive heterogeneous processors. To that end, the use of graphene-based antennas and transceivers with unique frequency-beam reconfigurability in the terahertz band is proposed. The feasibility of such a nanonetworking vision and the main research challenges towards its realization are analyzed from the technological, communications, and computer architecture perspectives.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

Knowledge graphs capture structured information and relations between a set of entities or items. As such they represent an attractive source of information that could help improve recommender systems. However existing approaches in this domain rely on manual feature engineering and do not allow for end-to-end training. Here we propose knowledge-aware graph neural networks with label smoothness regularization to provide better recommendations. Conceptually, our approach computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relationships for a given user. This way we transform the knowledge graph into a user-specific weighted graph and then applies a graph neural network to compute personalized item embeddings. To provide better inductive bias, we use label smoothness, which assumes that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over edge weights and we prove that it is equivalent to a label propagation scheme on a graph. Finally, we combine knowledge-aware graph neural networks and label smoothness and present the unified model. Experiment results show that our method outperforms strong baselines in four datasets. It also achieves strong performance in the scenario where user-item interactions are sparse.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司