In this paper, we present a novel flow model and compensation strategy for high-viscosity fluid deposition that yields high quality parts in the face of large transient delays and nonlinearity. Robotic high-viscosity fluid deposition is an essential process for a broad range of manufacturing applications including additive manufacturing, adhesive and sealant dispensing, and soft robotics. However, high-viscosity fluid deposition without compensation can lead to poor part quality and defects due to large transient delays and complex fluid dynamics. Our computationally efficient model is well-suited to real-time control and can be quickly calibrated and our compensation strategy leverages an iterative Linear-Quadratic Regulator to compute compensated deposition paths that can be deployed on most dispensing systems, without additional hardware. We demonstrate the improvements provided by our method when 3D printing using a robotic manipulator.
A simultaneously transmitting and reflecting surface (STARS) aided terahertz (THz) communication system is proposed. A novel power consumption model depending on the type and the resolution of individual elements is proposed for the STARS. Then, the system energy efficiency (EE) and spectral efficiency (SE) are maximized in both narrowband and wideband THz systems. 1) For the narrowband system, an iterative algorithm based on penalty dual decomposition is proposed to jointly optimize the hybrid beamforming at the base station (BS) and the independent phase-shift coefficients at the STARS. The proposed algorithm is then extended to the coupled phase-shift STARS. 2) For the wideband system, to eliminate the beam split effect, a time-delay (TD) network implemented by the true-time-delayers is applied in the hybrid beamforming structure. An iterative algorithm based on the quasi-Newton method is proposed to design the coefficients of the TD network. Finally, our numerical results reveal that i) there is a slight performance loss of EE and SE caused by coupled phase shifts of the STARS in both narrowband and wideband systems, and ii) the conventional hybrid beamforming achieved close performance of EE and SE to the full-digital one in the narrowband system, but not in the wideband system where the TD-based hybrid beamforming is more efficient.
The emerging modular vehicle (MV) technology possesses the ability to physically connect/disconnect with each other and thus travel in platoon for less energy consumption. Moreover, a platoon of MVs can be regarded as a new bus-like platform with expanded on-board carrying capacity and provide larger service throughput according to the demand density. This innovation concept might solve the mismatch problems between the fixed vehicle capacity and the temporal-spatial variations of demand in current transportation system. To obtain the optimal assignments and routes for the operation of MVs, a mixed integer linear programming (MILP) model is formulated to minimize the weighted total cost of vehicle travel cost and passenger service time. The temporal and spatial synchronization of vehicle platoons and passenger en-route transfers are determined and optimized by the MILP model while constructing the paths. Heuristic algorithms based on large neighborhood search are developed to solve the modular dial-a-ride problem (MDARP) for practical scenarios. A set of small-scale synthetic numerical experiments are tested to evaluate the optimality gap and computation time between our proposed MILP model and heuristic algorithms. Large-scale experiments are conducted on the Anaheim network with 378 candidate join/split nodes to further explore the potentials and identify the ideal operation scenarios of MVs. The results show that the innovative MV technology can save up to 52.0% in vehicle travel cost, 35.6% in passenger service time, and 29.4% in total cost against existing on-demand mobility services. Results suggest that MVs best benefit from platooning by serving enclave pairs as a hub-and-spoke service.
Embedded and IoT devices, largely powered by microcontroller units (MCUs), could be made more intelligent by leveraging on-device deep learning. One of the main challenges of neural network inference on an MCU is the extremely limited amount of read-write on-chip memory (SRAM, < 512 kB). SRAM is consumed by the neural network layer (operator) input and output buffers, which, traditionally, must be in memory (materialised) for an operator to execute. We discuss a novel execution paradigm for microcontroller deep learning, which modifies the execution of neural networks to avoid materialising full buffers in memory, drastically reducing SRAM usage with no computation overhead. This is achieved by exploiting the properties of operators, which can consume/produce a fraction of their input/output at a time. We describe a partial execution compiler, Pex, which produces memory-efficient execution schedules automatically by identifying subgraphs of operators whose execution can be split along the feature ("channel") dimension. Memory usage is reduced further by targeting memory bottlenecks with structured pruning, leading to the co-design of the network architecture and its execution schedule. Our evaluation of image and audio classification models: (a) establishes state-of-the-art performance in low SRAM usage regimes for considered tasks with up to +2.9% accuracy increase; (b) finds that a 4x memory reduction is possible by applying partial execution alone, or up to 10.5x when using the compiler-pruning co-design, while maintaining the classification accuracy compared to prior work; (c) uses the recovered SRAM to process higher resolution inputs instead, increasing accuracy by up to +3.9% on Visual Wake Words.
The design of experiments involves an inescapable compromise between covariate balance and robustness. This paper provides a formalization of this trade-off and introduces an experimental design that allows experimenters to navigate it. The design is specified by a robustness parameter that bounds the worst-case mean squared error of an estimator of the average treatment effect. Subject to the experimenter's desired level of robustness, the design aims to simultaneously balance all linear functions of potentially many covariates. The achieved level of balance is better than previously known possible and considerably better than what a fully random assignment would produce. We show that the mean squared error of the estimator is bounded by the minimum of the loss function of an implicit ridge regression of the potential outcomes on the covariates. The estimator does not itself conduct covariate adjustment, so one can interpret the approach as regression adjustment by design. Finally, we provide both a central limit theorem and non-asymptotic tail bounds for the estimator, which facilitate the construction of confidence intervals.
We introduce an integral representation of the Monge-Amp\`ere equation, which leads to a new finite difference method based upon numerical quadrature. The resulting scheme is monotone and fits immediately into existing convergence proofs for the Monge-Amp\`ere equation with either Dirichlet or optimal transport boundary conditions. The use of higher-order quadrature schemes allows for substantial reduction in the component of the error that depends on the angular resolution of the finite difference stencil. This, in turn, allows for significant improvements in both stencil width and formal truncation error. The resulting schemes can achieve a formal accuracy that is arbitrarily close to $\mathcal{O}(h^2)$, which is the optimal consistency order for monotone approximations of second order operators. We present three different implementations of this method. The first two exploit the spectral accuracy of the trapezoid rule on uniform angular discretizations to allow for computation on a nearest-neighbors finite difference stencil over a large range of grid refinements. The third uses higher-order quadrature to produce superlinear convergence while simultaneously utilizing narrower stencils than other monotone methods. Computational results are presented in two dimensions for problems of various regularity.
Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.
We develop a wall model for large-eddy simulation (LES) that takes into account various pressure-gradient effects using multi-agent reinforcement learning (MARL). The model is trained using low-Reynolds-number flow over periodic hills with agents distributed on the wall along the computational grid points. The model utilizes a wall eddy-viscosity formulation as the boundary condition, which is shown to provide better predictions of the mean velocity field, rather than the typical wall-shear stress formulation. Each agent receives states based on local instantaneous flow quantities at an off-wall location, computes a reward based on the estimated wall-shear stress, and provides an action to update the wall eddy viscosity at each time step. The trained wall model is validated in wall-modeled LES (WMLES) of flow over periodic hills at higher Reynolds numbers, and the results show the effectiveness of the model on flow with pressure gradients. The analysis of the trained model indicates that the model is capable of distinguishing between the various pressure gradient regimes present in the flow.
The Bradley-Terry-Luce (BTL) model is a classic and very popular statistical approach for eliciting a global ranking among a collection of items using pairwise comparison data. In applications in which the comparison outcomes are observed as a time series, it is often the case that data are non-stationary, in the sense that the true underlying ranking changes over time. In this paper we are concerned with localizing the change points in a high-dimensional BTL model with piece-wise constant parameters. We propose novel and practicable algorithms based on dynamic programming that can consistently estimate the unknown locations of the change points. We provide consistency rates for our methodology that depend explicitly on the model parameters, the temporal spacing between two consecutive change points and the magnitude of the change. We corroborate our findings with extensive numerical experiments and a real-life example.
We develop an extension of posterior sampling for reinforcement learning (PSRL) that is suited for a continuing agent-environment interface and integrates naturally into agent designs that scale to complex environments. The approach maintains a statistically plausible model of the environment and follows a policy that maximizes expected $\gamma$-discounted return in that model. At each time, with probability $1-\gamma$, the model is replaced by a sample from the posterior distribution over environments. For a suitable schedule of $\gamma$, we establish an $\tilde{O}(\tau S \sqrt{A T})$ bound on the Bayesian regret, where $S$ is the number of environment states, $A$ is the number of actions, and $\tau$ denotes the reward averaging time, which is a bound on the duration required to accurately estimate the average reward of any policy.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.