亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Phase-noise (PN) estimation and compensation are crucial in millimeter-wave (mmWave) communication systems to achieve high reliability. The PN estimation, however, suffers from high computational complexity due to its fundamental characteristics, such as spectral spreading and fast-varying fluctuations. In this paper, we propose a new framework for low-complexity PN compensation in orthogonal frequency-division multiplexing systems. The proposed framework also includes a pilot allocation strategy to minimize its overhead. The key ideas are to exploit the coherence bandwidth of mmWave systems and to approximate the actual PN spectrum with its dominant components, resulting in a non-iterative solution by using linear minimum mean squared-error estimation. The proposed method obtains a reduction of more than 2.5x in total complexity, as compared to the existing methods. Furthermore, we derive closed-form expressions for normalized mean squared-errors (NMSEs) as a function of critical system parameters, which help in understanding the NMSE behavior in low and high signal-to-noise ratio regimes. Lastly, we study a trade-off between performance and pilot-overhead to provide insight into an appropriate approximation of the PN spectrum.

相關內容

CC在計算復雜性方面表現突出。它的學科處于數學與計算機理論科學的交叉點,具有清晰的數學輪廓和嚴格的數學格式。官網鏈接: · 約束 · Performer · 泛化理論 · 值域 ·
2021 年 11 月 19 日

A new approach is presented to the problem of compensating the beam squint effect arising in wideband terahertz (THz) hybrid massive multiple-input multiple-output (MIMO) systems, based on the joint optimization of the phase shifter (PS) and true-time delay (TTD) values under per-TTD device time delay constraints. Unlike the prior approaches, the new approach does not require the unbounded time delay assumption; the range of time delay values that a TTD device can produce is strictly limited in our approach. Instead of focusing on the design of TTD values, we jointly optimize both the TTD and PS values to effectively cope with the practical time delay constraint. Simulation results that illustrate the performance benefits of the new method for the beam squint compensation are presented. Through simulations and analysis, we show that our approach is a generalization of the prior TTD-based precoding approaches.

We consider the analysis and design of distributed wireless networks wherein remote radio heads (RRHs) coordinate transmissions to serve multiple users on the same resource block (RB). Specifically, we analyze two possible multiple-input multiple-output wireless fronthaul solutions: multicast and zero forcing (ZF) beamforming. We develop a statistical model for the fronthaul rate and, coupled with an analysis of the user access rate, we optimize the placement of the RRHs. This model allows us to formulate the location optimization problem with a statistical constraint on fronthaul outage. Our results are cautionary, showing that the fronthaul requires considerable bandwidth to enable joint service to users. This requirement can be relaxed by serving a low number of users on the same RB. Additionally, we show that, with a fixed number of antennas, for the multicast fronthaul, it is prudent to concentrate these antennas on a few RRHs. However, for the ZF beamforming fronthaul, it is better to distribute the antennas on more RRHs. For the parameters chosen, using a ZF beamforming fronthaul improves the typical access rate by approximately 8% compared to multicast. Crucially, our work quantifies the effect of these fronthaul solutions and provides an effective tool for the design of distributed networks.

Topological data analysis (TDA) studies the shape patterns of data. Persistent homology (PH) is a widely used method in TDA that summarizes homological features of data at multiple scales and stores them in persistence diagrams (PDs). In this paper, we propose a random persistence diagram generation (RPDG) method that generates a sequence of random PDs from the ones produced by the data. RPDG is underpinned by (i) a model based on pairwise interacting point processes for inference of persistence diagrams, and (ii) by a reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithm for generating samples of PDs. A first example, which is based on a synthetic dataset, demonstrates the efficacy of RPDG and provides a detailed comparison with other existing methods for sampling PDs. A second example demonstrates the utility of RPDG to solve a materials science problem given a real dataset of small sample size.

In this paper, we demonstrate a formulation for optimizing coupled submodular maximization problems with provable sub-optimality bounds. In robotics applications, it is quite common that optimization problems are coupled with one another and therefore cannot be solved independently. Specifically, we consider two problems coupled if the outcome of the first problem affects the solution of a second problem that operates over a longer time scale. For example, in our motivating problem of environmental monitoring, we posit that multi-robot task allocation will potentially impact environmental dynamics and thus influence the quality of future monitoring, here modeled as a multi-robot intermittent deployment problem. The general theoretical approach for solving this type of coupled problem is demonstrated through this motivating example. Specifically, we propose a method for solving coupled problems modeled by submodular set functions with matroid constraints. A greedy algorithm for solving this class of problem is presented, along with sub-optimality guarantees. Finally, practical optimality ratios are shown through Monte Carlo simulations to demonstrate that the proposed algorithm can generate near-optimal solutions with high efficiency.

Molecular Communication via Diffusion (MCvD) is a prominent small-scale technology, which roots from the nature. Molecular single-input-single-output (SISO) topology is one of the most studied molecular networks in the literature, with solid analytical foundations on channel behavior and advanced modulation techniques. Although molecular SISO topologies are well-studied, the literature is yet to provide sufficient analytical modeling on multiple-output systems with fully absorbing receivers. In this paper, a comprehensive recursive model for channel estimation and modeling of molecular single-input-multiple-output (SIMO) systems is proposed as a sufficiently accurate channel approximation method. With its recursive nature, the model is used to estimate the channel behavior of molecular SIMO systems. A simplified approximation model is also presented with reduced computational requirements, resulting in slightly less accurate channel estimation. Analytical expressions for both models are derived. The performance of the proposed methods are evaluated via topological analysis and error metrics, and the methods show promising results on channel estimation compared to computer-simulated data. Furthermore, the approximation matches quite well with the comprehensive model, which indicates significant success in terms of model performance.

This paper develops a 3GPP-inspired design for the in-band-full-duplex (IBFD) integrated access and backhaul (IAB) networks in the frequency range 2 (FR2) band, which can enhance the spectral efficiency (SE) and coverage while reducing the latency. However, the self-interference (SI), which is usually more than 100 dB higher than the signal-of-interest, becomes the major bottleneck in developing these IBFD networks. We design and analyze a subarray-based hybrid beamforming IBFD-IAB system with the RF beamformers obtained via RF codebooks given by a modified Linde-Buzo-Gray (LBG) algorithm. The SI is canceled in three stages, where the first stage of antenna isolation is assumed to be successfully deployed. The second stage consists of the optical domain (OD)-based RF cancellation, where cancelers are connected with the RF chain pairs. The third stage is comprised of the digital cancellation via successive interference cancellation followed by minimum mean-squared error baseband receiver. Multiuser interference in the access link is canceled by zero-forcing at the IAB-node transmitter. Simulations show that under 400 MHz bandwidth, our proposed OD-based RF cancellation can achieve around 25 dB of cancellation with 100 taps. Moreover, the higher the hardware impairment and channel estimation error, the worse digital cancellation ability we can obtain.

In recent years, the usage of ensemble learning in applications has grown significantly due to increasing computational power allowing the training of large ensembles in reasonable time frames. Many applications, e.g., malware detection, face recognition, or financial decision-making, use a finite set of learning algorithms and do aggregate them in a way that a better predictive performance is obtained than any other of the individual learning algorithms. In the field of Post-Silicon Validation for semiconductor devices (PSV), data sets are typically provided that consist of various devices like, e.g., chips of different manufacturing lines. In PSV, the task is to approximate the underlying function of the data with multiple learning algorithms, each trained on a device-specific subset, instead of improving the performance of arbitrary classifiers on the entire data set. Furthermore, the expectation is that an unknown number of subsets describe functions showing very different characteristics. Corresponding ensemble members, which are called outliers, can heavily influence the approximation. Our method aims to find a suitable approximation that is robust to outliers and represents the best or worst case in a way that will apply to as many types as possible. A 'soft-max' or 'soft-min' function is used in place of a maximum or minimum operator. A Neural Network (NN) is trained to learn this 'soft-function' in a two-stage process. First, we select a subset of ensemble members that is representative of the best or worst case. Second, we combine these members and define a weighting that uses the properties of the Local Outlier Factor (LOF) to increase the influence of non-outliers and to decrease outliers. The weighting ensures robustness to outliers and makes sure that approximations are suitable for most types.

In this paper, we study the generalization properties of Model-Agnostic Meta-Learning (MAML) algorithms for supervised learning problems. We focus on the setting in which we train the MAML model over $m$ tasks, each with $n$ data points, and characterize its generalization error from two points of view: First, we assume the new task at test time is one of the training tasks, and we show that, for strongly convex objective functions, the expected excess population loss is bounded by ${\mathcal{O}}(1/mn)$. Second, we consider the MAML algorithm's generalization to an unseen task and show that the resulting generalization error depends on the total variation distance between the underlying distributions of the new task and the tasks observed during the training process. Our proof techniques rely on the connections between algorithmic stability and generalization bounds of algorithms. In particular, we propose a new definition of stability for meta-learning algorithms, which allows us to capture the role of both the number of tasks $m$ and number of samples per task $n$ on the generalization error of MAML.

Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.

The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, maximizing variance and preservation of pairwise relative distances. The derivation of their asymptotic correlation and numerical experiments tell that a projection usually cannot satisfy both objectives. In a standard classification problem we determine projections on the input data that balance them and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning frameworks. We introduce new variational loss functions that enable integration of additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of the proposed loss functions increase the accuracy.

北京阿比特科技有限公司