In this paper, we present an implicit Crank-Nicolson finite element (FE) scheme for solving a nonlinear Schr\"odinger-type system, which includes Schr\"odinger-Helmholz system and Schr\"odinger-Poisson system. In our numerical scheme, we employ an implicit Crank-Nicolson method for time discretization and a conforming FE method for spatial discretization. The proposed method is proved to be well-posedness and ensures mass and energy conservation at the discrete level. Furthermore, we prove optimal $L^2$ error estimates for the fully discrete solutions. Finally, some numerical examples are provided to verify the convergence rate and conservation properties.
In this paper we consider the finite element approximation of Maxwell's problem and analyse the prescription of essential boundary conditions in a weak sense using Nitsche's method. To avoid indefiniteness of the problem, the original equations are augmented with the gradient of a scalar field that allows one to impose the zero divergence of the magnetic induction, even if the exact solution for this scalar field is zero. Two finite element approximations are considered, namely, one in which the approximation spaces are assumed to satisfy the appropriate inf-sup condition that render the standard Galerkin method stable, and another augmented and stabilised one that permits the use of finite element interpolations of arbitrary order. Stability and convergence results are provided for the two finite element formulations considered.
This paper analyzes a $\theta$-method and 3-point time filter. This approach adds one additional line of code to the existing source code of $\theta$-method. We prove the method's $0$-stability, accuracy, and $A$-stability for both constant time step and variable time step. Some numerical tests are performed to validate the theoretical results.
Given a graph $G=(V,E)$ and an integer $k$, the Cluster Editing problem asks whether we can transform $G$ into a union of vertex-disjoint cliques by at most $k$ modifications (edge deletions or insertions). In this paper, we study the following variant of Cluster Editing. We are given a graph $G=(V,E)$, a packing $\cal H$ of modification-disjoint induced $P_3$s (no pair of $P_3$s in $\cal H$ share an edge or non-edge) and an integer $\ell$. The task is to decide whether $G$ can be transformed into a union of vertex-disjoint cliques by at most $\ell+|\cal H|$ modifications (edge deletions or insertions). We show that this problem is NP-hard even when $\ell=0$ (in which case the problem asks to turn $G$ into a disjoint union of cliques by performing exactly one edge deletion or insertion per element of $\cal H$) and when each vertex is in at most 23 $P_3$s of the packing. This answers negatively a question of van Bevern, Froese, and Komusiewicz (CSR 2016, ToCS 2018), repeated by C. Komusiewicz at Shonan meeting no. 144 in March 2019. We then initiate the study to find the largest integer $c$ such that the problem remains tractable when restricting to packings such that each vertex is in at most $c$ packed $P_3$s. Here packed $P_3$s are those belonging to the packing $\cal H$. Van Bevern et al. showed that the case $c = 1$ is fixed-parameter tractable with respect to $\ell$ and we show that the case $c = 2$ is solvable in $|V|^{2\ell + O(1)}$ time.
In this paper we consider PIDEs with gradient-independent Lipschitz continuous nonlinearities and prove that deep neural networks with ReLU activation function can approximate solutions of such semilinear PIDEs without curse of dimensionality in the sense that the required number of parameters in the deep neural networks increases at most polynomially in both the dimension $ d $ of the corresponding PIDE and the reciprocal of the prescribed accuracy $\epsilon $.
This paper reexamines the research on out-of-distribution (OOD) robustness in the field of NLP. We find that the distribution shift settings in previous studies commonly lack adequate challenges, hindering the accurate evaluation of OOD robustness. To address these issues, we propose a benchmark construction protocol that ensures clear differentiation and challenging distribution shifts. Then we introduce BOSS, a Benchmark suite for Out-of-distribution robustneSS evaluation covering 5 tasks and 20 datasets. Based on BOSS, we conduct a series of experiments on pre-trained language models for analysis and evaluation of OOD robustness. First, for vanilla fine-tuning, we examine the relationship between in-distribution (ID) and OOD performance. We identify three typical types that unveil the inner learning mechanism, which could potentially facilitate the forecasting of OOD robustness, correlating with the advancements on ID datasets. Then, we evaluate 5 classic methods on BOSS and find that, despite exhibiting some effectiveness in specific cases, they do not offer significant improvement compared to vanilla fine-tuning. Further, we evaluate 5 LLMs with various adaptation paradigms and find that when sufficient ID data is available, fine-tuning domain-specific models outperform LLMs on ID examples significantly. However, in the case of OOD instances, prioritizing LLMs with in-context learning yields better results. We identify that both fine-tuned small models and LLMs face challenges in effectively addressing downstream tasks. The code is public at \url{//github.com/lifan-yuan/OOD_NLP}.
Agglomerative hierarchical clustering based on Ordered Weighted Averaging (OWA) operators not only generalises the single, complete, and average linkages, but also includes intercluster distances based on a few nearest or farthest neighbours, trimmed and winsorised means of pairwise point similarities, amongst many others. We explore the relationships between the famous Lance-Williams update formula and the extended OWA-based linkages with weights generated via infinite coefficient sequences. Furthermore, we provide some conditions for the weight generators to guarantee the resulting dendrograms to be free from unaesthetic inversions.
This paper will suggest a new finite element method to find a $P^4$-velocity and a $P^3$-pressure solving incompressible Stokes equations at low cost. The method solves first the decoupled equation for a $P^4$-velocity. Then, using the calculated velocity, a locally calculable $P^3$-pressure will be defined component-wisely. The resulting $P^3$-pressure is analyzed to have the optimal order of convergence. Since the pressure is calculated by local computation only, the chief time cost of the new method is on solving the decoupled equation for the $P^4$-velocity. Besides, the method overcomes the problem of singular vertices or corners.
In this paper we propose a local projector for truncated hierarchical B-splines (THB-splines). The local THB-spline projector is an adaptation of the B\'ezier projector proposed by Thomas et al. (Comput Methods Appl Mech Eng 284, 2015) for B-splines and analysis-suitable T-splines (AS T-splines). For THB-splines, there are elements on which the restrictions of THB-splines are linearly dependent, contrary to B-splines and AS T-splines. Therefore, we cluster certain local mesh elements together such that the THB-splines with support over these clusters are linearly independent, and the B\'ezier projector is adapted to use these clusters. We introduce general extensions for which optimal convergence is shown theoretically and numerically. In addition, a simple adaptive refinement scheme is introduced and compared to Giust et al. (Comput. Aided Geom. Des. 80, 2020), where we find that our simple approach shows promise.
We construct a monotone continuous $Q^1$ finite element method on the uniform mesh for the anisotropic diffusion problem with a diagonally dominant diffusion coefficient matrix. The monotonicity implies the discrete maximum principle. Convergence of the new scheme is rigorously proven. On quadrilateral meshes, the matrix coefficient conditions translate into specific a mesh constraint.
We propose an augmented Lagrangian-based preconditioner to accelerate the convergence of Krylov subspace methods applied to linear systems of equations with a block three-by-three structure such as those arising from mixed finite element discretizations of the coupled Stokes-Darcy flow problem. We analyze the spectrum of the preconditioned matrix and we show how the new preconditioner can be efficiently applied. Numerical experiments are reported to illustrate the effectiveness of the preconditioner in conjunction with flexible GMRES for solving linear systems of equations arising from a 3D test problem.