亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Some of the most relevant document schemas used online, such as XML and JSON, have a nested format. In the last decade, the task of extracting data from nested documents over streams has become especially relevant. We focus on the streaming evaluation of queries with outputs of varied sizes over nested documents. We model queries of this kind as Visibly Pushdown Transducers (VPT), a computational model that extends visibly pushdown automata with outputs and has the same expressive power as MSO over nested documents. Since processing a document through a VPT can generate a massive number of results, we are interested in reading the input in a streaming fashion and enumerating the outputs one after another as efficiently as possible, namely, with constant-delay. This paper presents an algorithm that enumerates these elements with constant-delay after processing the document stream in a single pass. Furthermore, we show that this algorithm is worst-case optimal in terms of update-time per symbol and memory usage.

相關內容

Online technical forums (e.g., StackOverflow) are popular platforms for developers to discuss technical problems such as how to use specific Application Programming Interface (API), how to solve the programming tasks, or how to fix bugs in their codes. These discussions can often provide auxiliary knowledge of how to use the software that is not covered by the official documents. The automatic extraction of such knowledge will support a set of downstream tasks like API searching or indexing. However, unlike official documentation written by experts, discussions in open forums are made by regular developers who write in short and informal texts, including spelling errors or abbreviations. There are three major challenges for the accurate APIs recognition and linking mentioned APIs from unstructured natural language documents to an entry in the API repository: (1) distinguishing API mentions from common words; (2) identifying API mentions without a fully qualified name; and (3) disambiguating API mentions with similar method names but in a different library. In this paper, to tackle these challenges, we propose an ARCLIN tool, which can effectively distinguish and link APIs without using human annotations. Specifically, we first design an API recognizer to automatically extract API mentions from natural language sentences by a Conditional Random Field (CRF) on the top of a Bi-directional Long Short-Term Memory (Bi-LSTM) module, then we apply a context-aware scoring mechanism to compute the mention-entry similarity for each entry in an API repository. Compared to previous approaches with heuristic rules, our proposed tool without manual inspection outperforms by 8% in a high-quality dataset Py-mention, which contains 558 mentions and 2,830 sentences from five popular Python libraries.

Attention mechanisms have significantly boosted the performance of video classification neural networks thanks to the utilization of perspective contexts. However, the current research on video attention generally focuses on adopting a specific aspect of contexts (e.g., channel, spatial/temporal, or global context) to refine the features and neglects their underlying correlation when computing attentions. This leads to incomplete context utilization and hence bears the weakness of limited performance improvement. To tackle the problem, this paper proposes an efficient attention-in-attention (AIA) method for element-wise feature refinement, which investigates the feasibility of inserting the channel context into the spatio-temporal attention learning module, referred to as CinST, and also its reverse variant, referred to as STinC. Specifically, we instantiate the video feature contexts as dynamics aggregated along a specific axis with global average and max pooling operations. The workflow of an AIA module is that the first attention block uses one kind of context information to guide the gating weights calculation of the second attention that targets at the other context. Moreover, all the computational operations in attention units act on the pooled dimension, which results in quite few computational cost increase ($<$0.02\%). To verify our method, we densely integrate it into two classical video network backbones and conduct extensive experiments on several standard video classification benchmarks. The source code of our AIA is available at \url{//github.com/haoyanbin918/Attention-in-Attention}.

The development of cross-modal retrieval systems that can search and retrieve semantically relevant data across different modalities based on a query in any modality has attracted great attention in remote sensing (RS). In this paper, we focus our attention on cross-modal text-image retrieval, where queries from one modality (e.g., text) can be matched to archive entries from another (e.g., image). Most of the existing cross-modal text-image retrieval systems in RS require a high number of labeled training samples and also do not allow fast and memory-efficient retrieval. These issues limit the applicability of the existing cross-modal retrieval systems for large-scale applications in RS. To address this problem, in this paper we introduce a novel unsupervised cross-modal contrastive hashing (DUCH) method for text-image retrieval in RS. To this end, the proposed DUCH is made up of two main modules: 1) feature extraction module, which extracts deep representations of two modalities; 2) hashing module that learns to generate cross-modal binary hash codes from the extracted representations. We introduce a novel multi-objective loss function including: i) contrastive objectives that enable similarity preservation in intra- and inter-modal similarities; ii) an adversarial objective that is enforced across two modalities for cross-modal representation consistency; and iii) binarization objectives for generating hash codes. Experimental results show that the proposed DUCH outperforms state-of-the-art methods. Our code is publicly available at //git.tu-berlin.de/rsim/duch.

The Mixture-of-Experts (MoE) technique can scale up the model size of Transformers with an affordable computational overhead. We point out that existing learning-to-route MoE methods suffer from the routing fluctuation issue, i.e., the target expert of the same input may change along with training, but only one expert will be activated for the input during inference. The routing fluctuation tends to harm sample efficiency because the same input updates different experts but only one is finally used. In this paper, we propose StableMoE with two training stages to address the routing fluctuation problem. In the first training stage, we learn a balanced and cohesive routing strategy and distill it into a lightweight router decoupled from the backbone model. In the second training stage, we utilize the distilled router to determine the token-to-expert assignment and freeze it for a stable routing strategy. We validate our method on language modeling and multilingual machine translation. The results show that StableMoE outperforms existing MoE methods in terms of both convergence speed and performance.

We study the distributed minimum spanning tree (MST) problem, a fundamental problem in distributed computing. It is well-known that distributed MST can be solved in $\tilde{O}(D+\sqrt{n})$ rounds in the standard CONGEST model (where $n$ is the network size and $D$ is the network diameter) and this is essentially the best possible round complexity (up to logarithmic factors). However, in resource-constrained networks such as ad hoc wireless and sensor networks, nodes spending so much time can lead to significant spending of resources such as energy. Motivated by the above consideration, we study distributed algorithms for MST under the \emph{sleeping model} [Chatterjee et al., PODC 2020], a model for design and analysis of resource-efficient distributed algorithms. In the sleeping model, a node can be in one of two modes in any round -- \emph{sleeping} or \emph{awake} (unlike the traditional model where nodes are always awake). Only the rounds in which a node is \emph{awake} are counted, while \emph{sleeping} rounds are ignored. A node spends resources only in the awake rounds and hence the main goal is to minimize the \emph{awake complexity} of a distributed algorithm, the worst-case number of rounds any node is awake. We present deterministic and randomized distributed MST algorithms that have an \emph{optimal} awake complexity of $O(\log n)$ time with a matching lower bound. We also show that our randomized awake-optimal algorithm has essentially the best possible round complexity by presenting a lower bound of $\tilde{\Omega}(n)$ on the product of the awake and round complexity of any distributed algorithm (including randomized) that outputs an MST, where $\tilde{\Omega}$ hides a $1/(\text{polylog } n)$ factor.

Recurrent models have been dominating the field of neural machine translation (NMT) for the past few years. Transformers \citep{vaswani2017attention}, have radically changed it by proposing a novel architecture that relies on a feed-forward backbone and self-attention mechanism. Although Transformers are powerful, they could fail to properly encode sequential/positional information due to their non-recurrent nature. To solve this problem, position embeddings are defined exclusively for each time step to enrich word information. However, such embeddings are fixed after training regardless of the task and the word ordering system of the source or target language. In this paper, we propose a novel architecture with new position embeddings depending on the input text to address this shortcoming by taking the order of target words into consideration. Instead of using predefined position embeddings, our solution \textit{generates} new embeddings to refine each word's position information. Since we do not dictate the position of source tokens and learn them in an end-to-end fashion, we refer to our method as \textit{dynamic} position encoding (DPE). We evaluated the impact of our model on multiple datasets to translate from English into German, French, and Italian and observed meaningful improvements in comparison to the original Transformer.

We propose value retrieval with arbitrary queries for form-like documents to reduce human effort of processing forms. Unlike previous methods that only address a fixed set of field items, our method predicts target value for an arbitrary query based on the understanding of the layout and semantics of a form. To further boost model performance, we propose a simple document language modeling (SimpleDLM) strategy to improve document understanding on large-scale model pre-training. Experimental results show that our method outperforms previous designs significantly and the SimpleDLM further improves our performance on value retrieval by around 17% F1 score compared with the state-of-the-art pre-training method. Code is available at //github.com/salesforce/QVR-SimpleDLM.

The lossless compression of a single source $X^n$ was recently shown to be achievable with a notion of strong locality; any $X_i$ can be decoded from a {\emph{constant}} number of compressed bits, with a vanishing in $n$ probability of error. In contrast with the single source setup, we show that for two separately encoded sources $(X^n,Y^n)$, lossless compression and strong locality is generally not possible. More precisely, we show that for the class of "confusable" sources strong locality cannot be achieved whenever one of the sources is compressed below its entropy. In this case, irrespectively of $n$, the probability of error of decoding any $(X_i,Y_i)$ is lower bounded by $2^{-O(d_{\mathrm{loc}})}$, where $d_{\mathrm{loc}}$ denotes the number of compressed bits accessed by the local decoder. Conversely, if the source is not confusable, strong locality is possible even if one of the sources is compressed below its entropy. Results extend to any number of sources.

Common image-text joint understanding techniques presume that images and the associated text can universally be characterized by a single implicit model. However, co-occurring images and text can be related in qualitatively different ways, and explicitly modeling it could improve the performance of current joint understanding models. In this paper, we train a Cross-Modal Coherence Modelfor text-to-image retrieval task. Our analysis shows that models trained with image--text coherence relations can retrieve images originally paired with target text more often than coherence-agnostic models. We also show via human evaluation that images retrieved by the proposed coherence-aware model are preferred over a coherence-agnostic baseline by a huge margin. Our findings provide insights into the ways that different modalities communicate and the role of coherence relations in capturing commonsense inferences in text and imagery.

Natural Language Inference (NLI) has been extensively studied by the NLP community as a framework for estimating the semantic relation between sentence pairs. While early work identified certain biases in NLI models, recent advancements in modeling and datasets demonstrated promising performance. In this work, we further explore the direct zero-shot applicability of NLI models to real applications, beyond the sentence-pair setting they were trained on. First, we analyze the robustness of these models to longer and out-of-domain inputs. Then, we develop new aggregation methods to allow operating over full documents, reaching state-of-the-art performance on the ContractNLI dataset. Interestingly, we find NLI scores to provide strong retrieval signals, leading to more relevant evidence extractions compared to common similarity-based methods. Finally, we go further and investigate whole document clusters to identify both discrepancies and consensus among sources. In a test case, we find real inconsistencies between Wikipedia pages in different languages about the same topic.

北京阿比特科技有限公司