Actor-critic methods have achieved significant success in many challenging applications. However, its finite-time convergence is still poorly understood in its most practical form. Existing works on analyzing single-timescale actor-critic only focus on the i.i.d. sampling or tabular setting for simplicity. We consider the more practical online single-timescale actor-critic algorithm on continuous state space, where the critic is updated with a single Markovian sample per actor step. Existing analysis cannot conclude the convergence for such a challenging case. We prove that the online single-timescale actor-critic method is guaranteed to find an $\epsilon$-approximate stationary point with $\widetilde{\mathcal{O}}(\epsilon^{-2})$ sample complexity under standard assumptions, which can be further improved to $\mathcal{O}(\epsilon^{-2})$ under the i.i.d. sampling. We develop a novel framework that evaluates and controls the error propagation between actor and critic systematically. To our knowledge, this is the first finite-time analysis for the online single-timescale actor-critic method. Our results compare favorably to the existing literature in terms of considering the most practical yet challenging settings and requiring weaker assumptions.
This paper considers the sparse recovery with shuffled labels, i.e., $\by = \bPitrue \bX \bbetatrue + \bw$, where $\by \in \RR^n$, $\bPi\in \RR^{n\times n}$, $\bX\in \RR^{n\times p}$, $\bbetatrue\in \RR^p$, $\bw \in \RR^n$ denote the sensing result, the unknown permutation matrix, the design matrix, the sparse signal, and the additive noise, respectively. Our goal is to reconstruct both the permutation matrix $\bPitrue$ and the sparse signal $\bbetatrue$. We investigate this problem from both the statistical and computational aspects. From the statistical aspect, we first establish the minimax lower bounds on the sample number $n$ and the \emph{signal-to-noise ratio} ($\snr$) for the correct recovery of permutation matrix $\bPitrue$ and the support set $\supp(\bbetatrue)$, to be more specific, $n \gtrsim k\log p$ and $\log\snr \gtrsim \log n + \frac{k\log p}{n}$. Then, we confirm the tightness of these minimax lower bounds by presenting an exhaustive-search based estimator whose performance matches the lower bounds thereof up to some multiplicative constants. From the computational aspect, we impose a parsimonious assumption on the number of permuted rows and propose a computationally-efficient estimator accordingly. Moreover, we show that our proposed estimator can obtain the ground-truth $(\bPitrue, \supp(\bbetatrue))$ under mild conditions. Furthermore, we provide numerical experiments to corroborate our claims.
Likelihood-based inferences have been remarkably successful in wide-spanning application areas. However, even after due diligence in selecting a good model for the data at hand, there is inevitably some amount of model misspecification: outliers, data contamination or inappropriate parametric assumptions such as Gaussianity mean that most models are at best rough approximations of reality. A significant practical concern is that for certain inferences, even small amounts of model misspecification may have a substantial impact; a problem we refer to as brittleness. This article attempts to address the brittleness problem in likelihood-based inferences by choosing the most model friendly data generating process in a discrepancy-based neighbourhood of the empirical measure. This leads to a new Optimistically Weighted Likelihood (OWL), which robustifies the original likelihood by formally accounting for a small amount of model misspecification. Focusing on total variation (TV) neighborhoods, we study theoretical properties, develop inference algorithms and illustrate the methodology in applications to mixture models and regression.
We study the hidden-action principal-agent problem in an online setting. In each round, the principal posts a contract that specifies the payment to the agent based on each outcome. The agent then makes a strategic choice of action that maximizes her own utility, but the action is not directly observable by the principal. The principal observes the outcome and receives utility from the agent's choice of action. Based on past observations, the principal dynamically adjusts the contracts with the goal of maximizing her utility. We introduce an online learning algorithm and provide an upper bound on its Stackelberg regret. We show that when the contract space is $[0,1]^m$, the Stackelberg regret is upper bounded by $\widetilde O(\sqrt{m} \cdot T^{1-1/(2m+1)})$, and lower bounded by $\Omega(T^{1-1/(m+2)})$, where $\widetilde O$ omits logarithmic factors. This result shows that exponential-in-$m$ samples are sufficient and necessary to learn a near-optimal contract, resolving an open problem on the hardness of online contract design. Moreover, when contracts are restricted to some subset $\mathcal{F} \subset [0,1]^m$, we define an intrinsic dimension of $\mathcal{F}$ that depends on the covering number of the spherical code in the space and bound the regret in terms of this intrinsic dimension. When $\mathcal{F}$ is the family of linear contracts, we show that the Stackelberg regret grows exactly as $\Theta(T^{2/3})$. The contract design problem is challenging because the utility function is discontinuous. Bounding the discretization error in this setting has been an open problem. In this paper, we identify a limited set of directions in which the utility function is continuous, allowing us to design a new discretization method and bound its error. This approach enables the first upper bound with no restrictions on the contract and action space.
The coresets approach, also called subsampling or subset selection, aims to select a subsample as a surrogate for the observed sample. Such an approach has been used pervasively in large-scale data analysis. Existing coresets methods construct the subsample using a subset of rows from the predictor matrix. Such methods can be significantly inefficient when the predictor matrix is sparse or numerically sparse. To overcome the limitation, we develop a novel element-wise subset selection approach, called core-elements, for large-scale least squares estimation in classical linear regression. We provide a deterministic algorithm to construct the core-elements estimator, only requiring an $O(\mbox{nnz}(\mathbf{X})+rp^2)$ computational cost, where $\mathbf{X}$ is an $n\times p$ predictor matrix, $r$ is the number of elements selected from each column of $\mathbf{X}$, and $\mbox{nnz}(\cdot)$ denotes the number of non-zero elements. Theoretically, we show that the proposed estimator is unbiased and approximately minimizes an upper bound of the estimation variance. We also provide an approximation guarantee by deriving a coresets-like finite sample bound for the proposed estimator. To handle potential outliers in the data, we further combine core-elements with the median-of-means procedure, resulting in an efficient and robust estimator with theoretical consistency guarantees. Numerical studies on various synthetic and open-source datasets demonstrate the proposed method's superior performance compared to mainstream competitors.
Blind source separation (BSS) aims to recover an unobserved signal $S$ from its mixture $X=f(S)$ under the condition that the effecting transformation $f$ is invertible but unknown. As this is a basic problem with many practical applications, a fundamental issue is to understand how the solutions to this problem behave when their supporting statistical prior assumptions are violated. In the classical context of linear mixtures, we present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$. Modelling $S$ as a multidimensional stochastic process, we introduce an informative topology on the space of possible causes underlying a mixture $X$, and show that the behaviour of a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees with respect to this topology. This allows for a flexible and convenient quantification of general model uncertainty scenarios and amounts to the first comprehensive robustness framework for BSS. Our approach is entirely constructive, and we demonstrate its utility with novel theoretical guarantees for a number of statistical applications.
Learning precise surrogate models of complex computer simulations and physical machines often require long-lasting or expensive experiments. Furthermore, the modeled physical dependencies exhibit nonlinear and nonstationary behavior. Machine learning methods that are used to produce the surrogate model should therefore address these problems by providing a scheme to keep the number of queries small, e.g. by using active learning and be able to capture the nonlinear and nonstationary properties of the system. One way of modeling the nonstationarity is to induce input-partitioning, a principle that has proven to be advantageous in active learning for Gaussian processes. However, these methods either assume a known partitioning, need to introduce complex sampling schemes or rely on very simple geometries. In this work, we present a simple, yet powerful kernel family that incorporates a partitioning that: i) is learnable via gradient-based methods, ii) uses a geometry that is more flexible than previous ones, while still being applicable in the low data regime. Thus, it provides a good prior for active learning procedures. We empirically demonstrate excellent performance on various active learning tasks.
This paper presents a new method for combining (or aggregating or ensembling) multivariate probabilistic forecasts, taking into account dependencies between quantiles and covariates through a smoothing procedure that allows for online learning. Two smoothing methods are discussed: dimensionality reduction using Basis matrices and penalized smoothing. The new online learning algorithm generalizes the standard CRPS learning framework into multivariate dimensions. It is based on Bernstein Online Aggregation (BOA) and yields optimal asymptotic learning properties. We provide an in-depth discussion on possible extensions of the algorithm and several nested cases related to the existing literature on online forecast combination. The methodology is applied to forecasting day-ahead electricity prices, which are 24-dimensional distributional forecasts. The proposed method yields significant improvements over uniform combination in terms of continuous ranked probability score (CRPS). We discuss the temporal evolution of the weights and hyperparameters and present the results of reduced versions of the preferred model. A fast C++ implementation of all discussed methods is provided in the R-Package profoc.
We revisit the standard formulation of tabular actor-critic algorithm as a two time-scale stochastic approximation with value function computed on a faster time-scale and policy computed on a slower time-scale. This emulates policy iteration. We begin by observing that reversal of the time scales will in fact emulate value iteration and is a legitimate algorithm. We provide a proof of convergence and compare the two empirically with and without function approximation (with both linear and nonlinear function approximators) and observe that our proposed critic-actor algorithm performs on par with actor-critic in terms of both accuracy and computational effort.
Consider a hiring process with candidates coming from different universities. It is easy to order candidates who have the exact same background, yet it can be challenging to compare candidates otherwise. The latter case requires additional assessments, leading to a potentially high total cost for the hiring organization. Given an assigned budget, what is the optimal strategy to select the most qualified candidate? In the absence of additional information, we model the above problem by introducing a new variant of the secretary problem. Completely ordered candidates, belonging to distinct groups, are arriving in a sequential manner. The decision maker has access to the partial order of the candidates within their own group and can request access to the total order of observed candidates by paying some price. Given a bounded budget of comparisons, the goal of the decision-maker is to maximize the probability of selecting the best candidate. We consider a special case of two groups with stochastic i.i.d.\ group membership. We introduce and analyze a particular family of algorithms that we called Dynamic Double Threshold (DDT) family, deriving its asymptotic success probability which, given an optimal choice of parameter converges rapidly to the theoretical upper bound of $1/e$ as the comparison budget growth. We provide an optimal non-asymptotic memory-less algorithm for the above problem and give numerical evidence that it belongs to the DDT family when the number of candidates is high. We compare theoretically and numerically the optimal algorithm with a more naive approach that is directly inspired by the standard single-threshold secretary algorithm. Our analysis reveals several alluring properties of the optimal algorithm. It provides a step towards a fairer online selection process in the presence of unidentifiable biases.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.