Machine learning methods are widely used in the natural sciences to model and predict physical systems from observation data. Yet, they are often used as poorly understood "black boxes," disregarding existing mathematical structure and invariants of the problem. Recently, the proposal of Hamiltonian Neural Networks (HNNs) took a first step towards a unified "gray box" approach, using physical insight to improve performance for Hamiltonian systems. In this paper, we explore a significantly improved training method for HNNs, exploiting the symplectic structure of Hamiltonian systems with a different loss function. This frees the loss from an artificial lower bound. We mathematically guarantee the existence of an exact Hamiltonian function which the HNN can learn. This allows us to prove and numerically analyze the errors made by HNNs which, in turn, renders them fully explainable. Finally, we present a novel post-training correction to obtain the true Hamiltonian only from discretized observation data, up to an arbitrary order.
As a new emerging and promising type of generative models, diffusion models have proven to outperform Generative Adversarial Networks (GANs) in multiple tasks, including image synthesis. In this work, we explore semantic image synthesis for abdominal CT using conditional diffusion models, which can be used for downstream applications such as data augmentation. We systematically evaluated the performance of three diffusion models, as well as to other state-of-the-art GAN-based approaches, and studied the different conditioning scenarios for the semantic mask. Experimental results demonstrated that diffusion models were able to synthesize abdominal CT images with better quality. Additionally, encoding the mask and the input separately is more effective than na\"ive concatenating.
Engineering design knowledge is embodied in natural language text through intricate placement of entities and relationships. Ontological constructs of design knowledge often limit the performances of NLP techniques to extract design knowledge. Also, large-language models could be less useful for generating and explicating design knowledge, as these are trained predominantly on common-sense text. In this article, we present the constituents of design knowledge based on empirical observations from patent documents. We obtain a sample of 33,881 patents and populate over 24 million facts from the sentences in these. We conduct Zipf distribution analyses using the frequencies of unique entities and relationships that are present in the facts thus populated. While the literal entities cannot be generalised from the sample of patents, the relationships largely capture attributes ('of'), structure ('in', 'with'), purpose ('to', 'for'), hierarchy ('include'), exemplification ('such as'), and behaviour ('to', 'from'). The analyses reveal that over half of entities and relationships could be generalised to 64 and 24 linguistic syntaxes respectively, while hierarchical relationships include 75 syntaxes. These syntaxes represent the linguistic basis of engineering design knowledge. We combine facts within each patent into a knowledge graph, from which we discover motifs that are statistically over-represented subgraph patterns. Across all patents in the sample, we identify eight patterns that could be simplified into sequence [->...->], aggregation [->...<-], and hierarchy [<-...->] that form the structural basis of engineering design knowledge. We propose regulatory precepts for concretising abstract entities and relationships within subgraphs, while also explicating hierarchical structures. These precepts could be useful for better construction and management of knowledge in a design environment.
While there is an immense literature on Bayesian methods for clustering, the multiview case has received little attention. This problem focuses on obtaining distinct but statistically dependent clusterings in a common set of entities for different data types. For example, clustering patients into subgroups with subgroup membership varying according to the domain of the patient variables. A challenge is how to model the across-view dependence between the partitions of patients into subgroups. The complexities of the partition space make standard methods to model dependence, such as correlation, infeasible. In this article, we propose CLustering with Independence Centering (CLIC), a clustering prior that uses a single parameter to explicitly model dependence between clusterings across views. CLIC is induced by the product centered Dirichlet process (PCDP), a novel hierarchical prior that bridges between independent and equivalent partitions. We show appealing theoretic properties, provide a finite approximation and prove its accuracy, present a marginal Gibbs sampler for posterior computation, and derive closed form expressions for the marginal and joint partition distributions for the CLIC model. On synthetic data and in an application to epidemiology, CLIC accurately characterizes view-specific partitions while providing inference on the dependence level.
Label quality issues, such as noisy labels and imbalanced class distributions, have negative effects on model performance. Automatic reweighting methods identify problematic samples with label quality issues by recognizing their negative effects on validation samples and assigning lower weights to them. However, these methods fail to achieve satisfactory performance when the validation samples are of low quality. To tackle this, we develop Reweighter, a visual analysis tool for sample reweighting. The reweighting relationships between validation samples and training samples are modeled as a bipartite graph. Based on this graph, a validation sample improvement method is developed to improve the quality of validation samples. Since the automatic improvement may not always be perfect, a co-cluster-based bipartite graph visualization is developed to illustrate the reweighting relationships and support the interactive adjustments to validation samples and reweighting results. The adjustments are converted into the constraints of the validation sample improvement method to further improve validation samples. We demonstrate the effectiveness of Reweighter in improving reweighting results through quantitative evaluation and two case studies.
This paper studies using foundational large language models (LLMs) to make decisions during hyperparameter optimization (HPO). Empirical evaluations demonstrate that in settings with constrained search budgets, LLMs can perform comparably or better than traditional HPO methods like random search and Bayesian optimization on standard benchmarks. Furthermore, we propose to treat the code specifying our model as a hyperparameter, which the LLM outputs, going beyond the capabilities of existing HPO approaches. Our findings suggest that LLMs are a promising tool for improving efficiency in the traditional decision-making problem of hyperparameter optimization.
In statistics and machine learning, measuring the similarity between two or more datasets is important for several purposes. The performance of a predictive model on novel datasets, referred to as generalizability, critically depends on how similar the dataset used for fitting the model is to the novel datasets. Exploiting or transferring insights between similar datasets is a key aspect of meta-learning and transfer-learning. In two-sample testing, it is checked, whether the underlying (multivariate) distributions of two datasets coincide or not. Extremely many approaches for quantifying dataset similarity have been proposed in the literature. A structured overview is a crucial first step for comparisons of approaches. We examine more than 100 methods and provide a taxonomy, classifying them into ten classes, including (i) comparisons of cumulative distribution functions, density functions, or characteristic functions, (ii) methods based on multivariate ranks, (iii) discrepancy measures for distributions, (iv) graph-based methods, (v) methods based on inter-point distances, (vi) kernel-based methods, (vii) methods based on binary classification, (viii) distance and similarity measures for datasets, (ix) comparisons based on summary statistics, and (x) different testing approaches. Here, we present an extensive review of these methods. We introduce the main underlying ideas, formal definitions, and important properties.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.