亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose "Conceptual Coverage Across Languages" (CoCo-CroLa), a technique for benchmarking the degree to which any generative text-to-image system provides multilingual parity to its training language in terms of tangible nouns. For each model we can assess "conceptual coverage" of a given target language relative to a source language by comparing the population of images generated for a series of tangible nouns in the source language to the population of images generated for each noun under translation in the target language. This technique allows us to estimate how well-suited a model is to a target language as well as identify model-specific weaknesses, spurious correlations, and biases without a-priori assumptions. We demonstrate how it can be used to benchmark T2I models in terms of multilinguality, and how despite its simplicity it is a good proxy for impressive generalization.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 語言模型化 · 文本分類 · 標注 · state-of-the-art ·
2023 年 7 月 24 日

The zero-shot learning capabilities of large language models (LLMs) make them ideal for text classification without annotation or supervised training. Many studies have shown impressive results across multiple tasks. While tasks, data, and results differ widely, their similarities to human annotation can aid us in tackling new tasks with minimal expenses. We evaluate using 5 state-of-the-art LLMs as "annotators" on 5 different tasks (age, gender, topic, sentiment prediction, and hate speech detection), across 4 languages: English, French, German, and Spanish. No single model excels at all tasks, across languages, or across all labels within a task. However, aggregation techniques designed for human annotators perform substantially better than any one individual model. Overall, though, LLMs do not rival even simple supervised models, so they do not (yet) replace the need for human annotation. We also discuss the tradeoffs between speed, accuracy, cost, and bias when it comes to aggregated model labeling versus human annotation.

Medical imaging is a key component in clinical diagnosis, treatment planning and clinical trial design, accounting for almost 90% of all healthcare data. CNNs achieved performance gains in medical image analysis (MIA) over the last years. CNNs can efficiently model local pixel interactions and be trained on small-scale MI data. The main disadvantage of typical CNN models is that they ignore global pixel relationships within images, which limits their generalisation ability to understand out-of-distribution data with different 'global' information. The recent progress of Artificial Intelligence gave rise to Transformers, which can learn global relationships from data. However, full Transformer models need to be trained on large-scale data and involve tremendous computational complexity. Attention and Transformer compartments (Transf/Attention) which can well maintain properties for modelling global relationships, have been proposed as lighter alternatives of full Transformers. Recently, there is an increasing trend to co-pollinate complementary local-global properties from CNN and Transf/Attention architectures, which led to a new era of hybrid models. The past years have witnessed substantial growth in hybrid CNN-Transf/Attention models across diverse MIA problems. In this systematic review, we survey existing hybrid CNN-Transf/Attention models, review and unravel key architectural designs, analyse breakthroughs, and evaluate current and future opportunities as well as challenges. We also introduced a comprehensive analysis framework on generalisation opportunities of scientific and clinical impact, based on which new data-driven domain generalisation and adaptation methods can be stimulated.

In this paper, we study the problem of secret language in NLP, where current language models (LMs) seem to have a hidden vocabulary that allows them to interpret absurd inputs as meaningful concepts. We investigate two research questions: ``Does the secret language phenomenon exist in different language models?'' and ``Does secret language depend on specific context?'' To answer these questions, we introduce a novel method named \textit{SecretFinding}, a gradient-based approach that can automatically discover secret languages in LMs. We conduct experiments on five representative models (Electra, ALBERT, Roberta, DistillBERT, and CLIP) finetuned on four NLP benchmarks (SST-2, MRPC, SNLI, and SQuAD) and a language-grounding benchmark (MSCOCO). Our experimental results show that even when we replace the most important words with others that are semantically dissimilar to the original words in a sentence, LMs do not consider the new sentence semantically dissimilar to the original, as the output does not change with a high probability. This phenomenon holds true across the five models and five tasks and gives a positive answer to the first research question. As for the second research question, we find that the secret language discovered by \textit{SecretFinding} is quite general and could even be transferred to other models in the black-box settings, such as GPT-3 and ChatGPT. Finally, we discuss the causes of secret language, how to eliminate it, the potential connection to memorization, and ethical implications. Examples of secret language found by SecretFinding are available on //huggingface.co/spaces/anonymousauthors/ACL23_SecretLanguage.

The potential of artificial intelligence (AI)-based large language models (LLMs) holds considerable promise in revolutionizing education, research, and practice. However, distinguishing between human-written and AI-generated text has become a significant task. This paper presents a comparative study, introducing a novel dataset of human-written and LLM-generated texts in different genres: essays, stories, poetry, and Python code. We employ several machine learning models to classify the texts. Results demonstrate the efficacy of these models in discerning between human and AI-generated text, despite the dataset's limited sample size. However, the task becomes more challenging when classifying GPT-generated text, particularly in story writing. The results indicate that the models exhibit superior performance in binary classification tasks, such as distinguishing human-generated text from a specific LLM, compared to the more complex multiclass tasks that involve discerning among human-generated and multiple LLMs. Our findings provide insightful implications for AI text detection while our dataset paves the way for future research in this evolving area.

The demand for artificial intelligence (AI) in healthcare is rapidly increasing. However, significant challenges arise from data scarcity and privacy concerns, particularly in medical imaging. While existing generative models have achieved success in image synthesis and image-to-image translation tasks, there remains a gap in the generation of 3D semantic medical images. To address this gap, we introduce Med-DDPM, a diffusion model specifically designed for semantic 3D medical image synthesis, effectively tackling data scarcity and privacy issues. The novelty of Med-DDPM lies in its incorporation of semantic conditioning, enabling precise control during the image generation process. Our model outperforms Generative Adversarial Networks (GANs) in terms of stability and performance, generating diverse and anatomically coherent images with high visual fidelity. Comparative analysis against state-of-the-art augmentation techniques demonstrates that Med-DDPM produces comparable results, highlighting its potential as a data augmentation tool for enhancing model accuracy. In conclusion, Med-DDPM pioneers 3D semantic medical image synthesis by delivering high-quality and anatomically coherent images. Furthermore, the integration of semantic conditioning with Med-DDPM holds promise for image anonymization in the field of biomedical imaging, showcasing the capabilities of the model in addressing challenges related to data scarcity and privacy concerns.

In inverse problems, one attempts to infer spatially variable functions from indirect measurements of a system. To practitioners of inverse problems, the concept of "information" is familiar when discussing key questions such as which parts of the function can be inferred accurately and which cannot. For example, it is generally understood that we can identify system parameters accurately only close to detectors, or along ray paths between sources and detectors, because we have "the most information" for these places. Although referenced in many publications, the "information" that is invoked in such contexts is not a well understood and clearly defined quantity. Herein, we present a definition of information density that is based on the variance of coefficients as derived from a Bayesian reformulation of the inverse problem. We then discuss three areas in which this information density can be useful in practical algorithms for the solution of inverse problems, and illustrate the usefulness in one of these areas -- how to choose the discretization mesh for the function to be reconstructed -- using numerical experiments.

U-Net, known for its simple yet efficient architecture, is widely utilized for image processing tasks and is particularly suitable for deployment on neuromorphic chips. This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture. To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy. To address the issue of information loss, we introduce multi-threshold spiking neurons, which improve the efficiency of information transmission within the Spiking-UNet. For the training strategy, we adopt a conversion and fine-tuning pipeline that leverage pre-trained U-Net models. During the conversion process, significant variability in data distribution across different parts is observed when utilizing skip connections. Therefore, we propose a connection-wise normalization method to prevent inaccurate firing rates. Furthermore, we adopt a flow-based training method to fine-tune the converted models, reducing time steps while preserving performance. Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart, surpassing existing SNN methods. Compared with the converted Spiking-UNet without fine-tuning, our Spiking-UNet reduces inference time by approximately 90\%. This research broadens the application scope of SNNs in image processing and is expected to inspire further exploration in the field of neuromorphic engineering. The code for our Spiking-UNet implementation is available at //github.com/SNNresearch/Spiking-UNet.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.

Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.

北京阿比特科技有限公司