We propose a residual randomization procedure designed for robust Lasso-based inference in the high-dimensional setting. Compared to earlier work that focuses on sub-Gaussian errors, the proposed procedure is designed to work robustly in settings that also include heavy-tailed covariates and errors. Moreover, our procedure can be valid under clustered errors, which is important in practice, but has been largely overlooked by earlier work. Through extensive simulations, we illustrate our method's wider range of applicability as suggested by theory. In particular, we show that our method outperforms state-of-art methods in challenging, yet more realistic, settings where the distribution of covariates is heavy-tailed or the sample size is small, while it remains competitive in standard, "well behaved" settings previously studied in the literature.
We present the backbone method, a generic framework that enables sparse and interpretable supervised machine learning methods to scale to ultra-high dimensional problems. We solve sparse regression problems with $10^7$ features in minutes and $10^8$ features in hours, as well as decision tree problems with $10^5$ features in minutes.The proposed method operates in two phases: we first determine the backbone set, consisting of potentially relevant features, by solving a number of tractable subproblems; then, we solve a reduced problem, considering only the backbone features. For the sparse regression problem, our theoretical analysis shows that, under certain assumptions and with high probability, the backbone set consists of the truly relevant features. Numerical experiments on both synthetic and real-world datasets demonstrate that our method outperforms or competes with state-of-the-art methods in ultra-high dimensional problems, and competes with optimal solutions in problems where exact methods scale, both in terms of recovering the truly relevant features and in its out-of-sample predictive performance.
Quantile regression has been successfully used to study heterogeneous and heavy-tailed data. Varying-coefficient models are frequently used to capture changes in the effect of input variables on the response as a function of an index or time. In this work, we study high-dimensional varying-coefficient quantile regression models and develop new tools for statistical inference. We focus on development of valid confidence intervals and honest tests for nonparametric coefficients at a fixed time point and quantile, while allowing for a high-dimensional setting where the number of input variables exceeds the sample size. Performing statistical inference in this regime is challenging due to the usage of model selection techniques in estimation. Nevertheless, we can develop valid inferential tools that are applicable to a wide range of data generating processes and do not suffer from biases introduced by model selection. We performed numerical simulations to demonstrate the finite sample performance of our method, and we also illustrated the application with a real data example.
We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificationist methodology of scientific inquiry. Our results collected through months of experimental computations show that all benchmarked algorithms -- (S)NPE, (S)NRE, SNL and variants of ABC -- may produce overconfident posterior approximations, which makes them demonstrably unreliable and dangerous if one's scientific goal is to constrain parameters of interest. We believe that failing to address this issue will lead to a well-founded trust crisis in simulation-based inference. For this reason, we argue that research efforts should now consider theoretical and methodological developments of conservative approximate inference algorithms and present research directions towards this objective. In this regard, we show empirical evidence that ensembles are consistently more reliable.
We develop a new robust geographically weighted regression method in the presence of outliers. We embed the standard geographically weighted regression in robust objective function based on $\gamma$-divergence. A novel feature of the proposed approach is that two tuning parameters that control robustness and spatial smoothness are automatically tuned in a data-dependent manner. Further, the proposed method can produce robust standard error estimates of the robust estimator and give us a reasonable quantity for local outlier detection. We demonstrate that the proposed method is superior to the existing robust version of geographically weighted regression through simulation and data analysis.
This paper presents an extension and an elaboration of the theory of differential similarity, which was originally proposed in arXiv:1401.2411 [cs.LG]. The goal is to develop an algorithm for clustering and coding that combines a geometric model with a probabilistic model in a principled way. For simplicity, the geometric model in the earlier paper was restricted to the three-dimensional case. The present paper removes this restriction, and considers the full $n$-dimensional case. Although the mathematical model is the same, the strategies for computing solutions in the $n$-dimensional case are different, and one of the main purposes of this paper is to develop and analyze these strategies. Another main purpose is to devise techniques for estimating the parameters of the model from sample data, again in $n$ dimensions. We evaluate the solution strategies and the estimation techniques by applying them to two familiar real-world examples: the classical MNIST dataset and the CIFAR-10 dataset.
Labeling patients in electronic health records with respect to their statuses of having a disease or condition, i.e. case or control statuses, has increasingly relied on prediction models using high-dimensional variables derived from structured and unstructured electronic health record data. A major hurdle currently is a lack of valid statistical inference methods for the case probability. In this paper, considering high-dimensional sparse logistic regression models for prediction, we propose a novel bias-corrected estimator for the case probability through the development of linearization and variance enhancement techniques. We establish asymptotic normality of the proposed estimator for any loading vector in high dimensions. We construct a confidence interval for the case probability and propose a hypothesis testing procedure for patient case-control labelling. We demonstrate the proposed method via extensive simulation studies and application to real-world electronic health record data.
We consider the problem of change point detection for high-dimensional distributions in a location family when the dimension can be much larger than the sample size. In change point analysis, the widely used cumulative sum (CUSUM) statistics are sensitive to outliers and heavy-tailed distributions. In this paper, we propose a robust, tuning-free (i.e., fully data-dependent), and easy-to-implement change point test that enjoys strong theoretical guarantees. To achieve the robust purpose in a nonparametric setting, we formulate the change point detection in the multivariate $U$-statistics framework with anti-symmetric and nonlinear kernels. Specifically, the within-sample noise is canceled out by anti-symmetry of the kernel, while the signal distortion under certain nonlinear kernels can be controlled such that the between-sample change point signal is magnitude preserving. A (half) jackknife multiplier bootstrap (JMB) tailored to the change point detection setting is proposed to calibrate the distribution of our $\ell^{\infty}$-norm aggregated test statistic. Subject to mild moment conditions on kernels, we derive the uniform rates of convergence for the JMB to approximate the sampling distribution of the test statistic, and analyze its size and power properties. Extensions to multiple change point testing and estimation are discussed with illustration from numerical studies.
There is an increasing realization that algorithmic inductive biases are central in preventing overfitting; empirically, we often see a benign overfitting phenomenon in overparameterized settings for natural learning algorithms, such as stochastic gradient descent (SGD), where little to no explicit regularization has been employed. This work considers this issue in arguably the most basic setting: constant-stepsize SGD (with iterate averaging or tail averaging) for linear regression in the overparameterized regime. Our main result provides a sharp excess risk bound, stated in terms of the full eigenspectrum of the data covariance matrix, that reveals a bias-variance decomposition characterizing when generalization is possible: (i) the variance bound is characterized in terms of an effective dimension (specific for SGD) and (ii) the bias bound provides a sharp geometric characterization in terms of the location of the initial iterate (and how it aligns with the data covariance matrix). More specifically, for SGD with iterate averaging, we demonstrate the sharpness of the established excess risk bound by proving a matching lower bound (up to constant factors). For SGD with tail averaging, we show its advantage over SGD with iterate averaging by proving a better excess risk bound together with a nearly matching lower bound. Moreover, we reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares (minimum-norm interpolation) and ridge regression. Experimental results on synthetic data corroborate our theoretical findings.
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.
Robust estimation is much more challenging in high dimensions than it is in one dimension: Most techniques either lead to intractable optimization problems or estimators that can tolerate only a tiny fraction of errors. Recent work in theoretical computer science has shown that, in appropriate distributional models, it is possible to robustly estimate the mean and covariance with polynomial time algorithms that can tolerate a constant fraction of corruptions, independent of the dimension. However, the sample and time complexity of these algorithms is prohibitively large for high-dimensional applications. In this work, we address both of these issues by establishing sample complexity bounds that are optimal, up to logarithmic factors, as well as giving various refinements that allow the algorithms to tolerate a much larger fraction of corruptions. Finally, we show on both synthetic and real data that our algorithms have state-of-the-art performance and suddenly make high-dimensional robust estimation a realistic possibility.