亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a graph-based discretization method for solving hyperbolic systems of conservation laws using discontinuous finite elements. The method is based on the convex limiting technique technique introduced by Guermond et al. (SIAM J. Sci. Comput. 40, A3211--A3239, 2018). As such, these methods are mathematically guaranteed to be invariant-set preserving and to satisfy discrete pointwise entropy inequalities. In this paper we extend the theory for the specific case of discontinuous finite elements, incorporating the effect of boundary conditions into the formulation. From a practical point of view, the implementation of these methods is algebraic, meaning, that they operate directly on the stencil of the spatial discretization. This first paper in a sequence of two papers introduces and verifies essential building blocks for the convex limiting procedure using discontinuous Galerkin discretizations. In particular, we discuss a minimally stabilized high-order discontinuous Galerkin method that exhibits optimal convergence rates comparable to linear stabilization techniques for cell-based methods. In addition, we discuss a proper choice of local bounds for the convex limiting procedure. A follow-up contribution will focus on the high-performance implementation, benchmarking and verification of the method. We verify convergence rates on a sequence of one- and two-dimensional tests with differing regularity. In particular, we obtain optimal convergence rates for single rarefaction waves. We also propose a simple test in order to verify the implementation of boundary conditions and their convergence rates.

相關內容

The subject of this work is an adaptive stochastic Galerkin finite element method for parametric or random elliptic partial differential equations, which generates sparse product polynomial expansions with respect to the parametric variables of solutions. For the corresponding spatial approximations, an independently refined finite element mesh is used for each polynomial coefficient. The method relies on multilevel expansions of input random fields and achieves error reduction with uniform rate. In particular, the saturation property for the refinement process is ensured by the algorithm. The results are illustrated by numerical experiments, including cases with random fields of low regularity.

Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research. However, in clinical practice, it frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients, limiting the utilization of deep learning models trained on multi-sequence data. One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition. State-of-the-art methods tackling this problem are based on convolutional neural networks (CNN) which usually suffer from spectral biases, resulting in poor reconstruction of high-frequency fine details. In this paper, we propose Conditional Neural fields with Shift modulation (CoNeS), a model that takes voxel coordinates as input and learns a representation of the target images for multi-sequence MRI translation. The proposed model uses a multi-layer perceptron (MLP) instead of a CNN as the decoder for pixel-to-pixel mapping. Hence, each target image is represented as a neural field that is conditioned on the source image via shift modulation with a learned latent code. Experiments on BraTS 2018 and an in-house clinical dataset of vestibular schwannoma patients showed that the proposed method outperformed state-of-the-art methods for multi-sequence MRI translation both visually and quantitatively. Moreover, we conducted spectral analysis, showing that CoNeS was able to overcome the spectral bias issue common in conventional CNN models. To further evaluate the usage of synthesized images in clinical downstream tasks, we tested a segmentation network using the synthesized images at inference.

We consider a geometric programming problem consisting in minimizing a function given by the supremum of finitely many log-Laplace transforms of discrete nonnegative measures on a Euclidean space. Under a coerciveness assumption, we show that a $\varepsilon$-minimizer can be computed in a time that is polynomial in the input size and in $|\log\varepsilon|$. This is obtained by establishing bit-size estimates on approximate minimizers and by applying the ellipsoid method. We also derive polynomial iteration complexity bounds for the interior point method applied to the same class of problems. We deduce that the spectral radius of a partially symmetric, weakly irreducible nonnegative tensor can be approximated within $\varepsilon$ error in poly-time. For strongly irreducible tensors, we also show that the logarithm of the positive eigenvector is poly-time computable. Our results also yield that the the maximum of a nonnegative homogeneous $d$-form in the unit ball with respect to $d$-H\"older norm can be approximated in poly-time. In particular, the spectral radius of uniform weighted hypergraphs and some known upper bounds for the clique number of uniform hypergraphs are poly-time computable.

The objective of this article is to address the discretisation of fractured/faulted poromechanical models using 3D polyhedral meshes in order to cope with the geometrical complexity of faulted geological models. A polytopal scheme is proposed for contact-mechanics, based on a mixed formulation combining a fully discrete space and suitable reconstruction operators for the displacement field with a face-wise constant approximation of the Lagrange multiplier accounting for the surface tractions along the fracture/fault network. To ensure the inf--sup stability of the mixed formulation, a bubble-like degree of freedom is included in the discrete space of displacements (and taken into account in the reconstruction operators). It is proved that this fully discrete scheme for the displacement is equivalent to a low-order Virtual Element scheme, with a bubble enrichment of the VEM space. This $\mathbb{P}^1$-bubble VEM--$\mathbb{P}^0$ mixed discretization is combined with an Hybrid Finite Volume scheme for the Darcy flow. All together, the proposed approach is adapted to complex geometry accounting for network of planar faults/fractures including corners, tips and intersections; it leads to efficient semi-smooth Newton solvers for the contact-mechanics and preserve the dissipative properties of the fully coupled model. Our approach is investigated in terms of convergence and robustness on several 2D and 3D test cases using either analytical or numerical reference solutions both for the stand alone static contact mechanical model and the fully coupled poromechanical model.

We combine the recent relaxation approach with multiderivative Runge-Kutta methods to preserve conservation or dissipation of entropy functionals for ordinary and partial differential equations. Relaxation methods are minor modifications of explicit and implicit schemes, requiring only the solution of a single scalar equation per time step in addition to the baseline scheme. We demonstrate the robustness of the resulting methods for a range of test problems including the 3D compressible Euler equations. In particular, we point out improved error growth rates for certain entropy-conservative problems including nonlinear dispersive wave equations.

The direct parametrisation method for invariant manifold is a model-order reduction technique that can be applied to nonlinear systems described by PDEs and discretised e.g. with a finite element procedure in order to derive efficient reduced-order models (ROMs). In nonlinear vibrations, it has already been applied to autonomous and non-autonomous problems to propose ROMs that can compute backbone and frequency-response curves of structures with geometric nonlinearity. While previous developments used a first-order expansion to cope with the non-autonomous term, this assumption is here relaxed by proposing a different treatment. The key idea is to enlarge the dimension of the parametrising coordinates with additional entries related to the forcing. A new algorithm is derived with this starting assumption and, as a key consequence, the resonance relationships appearing through the homological equations involve multiple occurrences of the forcing frequency, showing that with this new development, ROMs for systems exhibiting a superharmonic resonance, can be derived. The method is implemented and validated on academic test cases involving beams and arches. It is numerically demonstrated that the method generates efficient ROMs for problems involving 3:1 and 2:1 superharmonic resonances, as well as converged results for systems where the first-order truncation on the non-autonomous term showed a clear limitation.

The use of discretized variables in the development of prediction models is a common practice, in part because the decision-making process is more natural when it is based on rules created from segmented models. Although this practice is perhaps more common in medicine, it is extensible to any area of knowledge where a predictive model helps in decision-making. Therefore, providing researchers with a useful and valid categorization method could be a relevant issue when developing prediction models. In this paper, we propose a new general methodology that can be applied to categorize a predictor variable in any regression model where the response variable belongs to the exponential family distribution. Furthermore, it can be applied in any multivariate context, allowing to categorize more than one continuous covariate simultaneously. In addition, a computationally very efficient method is proposed to obtain the optimal number of categories, based on a pseudo-BIC proposal. Several simulation studies have been conducted in which the efficiency of the method with respect to both the location and the number of estimated cut-off points is shown. Finally, the categorization proposal has been applied to a real data set of 543 patients with chronic obstructive pulmonary disease from Galdakao Hospital's five outpatient respiratory clinics, who were followed up for 10 years. We applied the proposed methodology to jointly categorize the continuous variables six-minute walking test and forced expiratory volume in one second in a multiple Poisson generalized additive model for the response variable rate of the number of hospital admissions by years of follow-up. The location and number of cut-off points obtained were clinically validated as being in line with the categorizations used in the literature.

We propose a new Riemannian gradient descent method for computing spherical area-preserving mappings of topological spheres using a Riemannian retraction-based framework with theoretically guaranteed convergence. The objective function is based on the stretch energy functional, and the minimization is constrained on a power manifold of unit spheres embedded in 3-dimensional Euclidean space. Numerical experiments on several mesh models demonstrate the accuracy and stability of the proposed framework. Comparisons with two existing state-of-the-art methods for computing area-preserving mappings demonstrate that our algorithm is both competitive and more efficient. Finally, we present a concrete application to the problem of landmark-aligned surface registration of two brain models.

Compared to other techniques, particle swarm optimization is more frequently utilized because of its ease of use and low variability. However, it is complicated to find the best possible solution in the search space in large-scale optimization problems. Moreover, changing algorithm variables does not influence algorithm convergence much. The PSO algorithm can be combined with other algorithms. It can use their advantages and operators to solve this problem. Therefore, this paper proposes the onlooker multi-parent crossover discrete particle swarm optimization (OMPCDPSO). To improve the efficiency of the DPSO algorithm, we utilized multi-parent crossover on the best solutions. We performed an independent and intensive neighborhood search using the onlooker bees of the bee algorithm. The algorithm uses onlooker bees and crossover. They do local search (exploitation) and global search (exploration). Each of these searches is among the best solutions (employed bees). The proposed algorithm was tested on the allocation problem, which is an NP-hard optimization problem. Also, we used two types of simulated data. They were used to test the scalability and complexity of the better algorithm. Also, fourteen 2D test functions and thirteen 30D test functions were used. They also used twenty IEEE CEC2005 benchmark functions to test the efficiency of OMPCDPSO. Also, to test OMPCDPSO's performance, we compared it to four new binary optimization algorithms and three classic ones. The results show that the OMPCDPSO version had high capability. It performed better than other algorithms. The developed algorithm in this research (OMCDPSO) in 36 test functions out of 47 (76.60%) is better than other algorithms. The Onlooker bees and multi-parent operators significantly impact the algorithm's performance.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司