亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We utilize Cauchy's argument principle in combination with the Jacobian of a holomorphic function in several complex variables and the first moment of a ratio of two correlated complex normal random variables to prove explicit formulas for the density and the mean distribution of complex zeros of random polynomials spanned by orthogonal polynomials on the unit circle and on the unit disk. We then inquire into the consequences of their asymptotical evaluations.

相關內容

Differential privacy is a mathematical concept that provides an information-theoretic security guarantee. While differential privacy has emerged as a de facto standard for guaranteeing privacy in data sharing, the known mechanisms to achieve it come with some serious limitations. Utility guarantees are usually provided only for a fixed, a priori specified set of queries. Moreover, there are no utility guarantees for more complex - but very common - machine learning tasks such as clustering or classification. In this paper we overcome some of these limitations. Working with metric privacy, a powerful generalization of differential privacy, we develop a polynomial-time algorithm that creates a private measure from a data set. This private measure allows us to efficiently construct private synthetic data that are accurate for a wide range of statistical analysis tools. Moreover, we prove an asymptotically sharp min-max result for private measures and synthetic data for general compact metric spaces. A key ingredient in our construction is a new superregular random walk, whose joint distribution of steps is as regular as that of independent random variables, yet which deviates from the origin logarithmicaly slowly.

This paper establishes the asymptotic independence between the quadratic form and maximum of a sequence of independent random variables. Based on this theoretical result, we find the asymptotic joint distribution for the quadratic form and maximum, which can be applied into the high-dimensional testing problems. By combining the sum-type test and the max-type test, we propose the Fisher's combination tests for the one-sample mean test and two-sample mean test. Under this novel general framework, several strong assumptions in existing literature have been relaxed. Monte Carlo simulation has been done which shows that our proposed tests are strongly robust to both sparse and dense data.

In this paper we propose a methodology to accelerate the resolution of the so-called "Sorted L-One Penalized Estimation" (SLOPE) problem. Our method leverages the concept of "safe screening", well-studied in the literature for \textit{group-separable} sparsity-inducing norms, and aims at identifying the zeros in the solution of SLOPE. More specifically, we derive a set of \(\tfrac{n(n+1)}{2}\) inequalities for each element of the \(n\)-dimensional primal vector and prove that the latter can be safely screened if some subsets of these inequalities are verified. We propose moreover an efficient algorithm to jointly apply the proposed procedure to all the primal variables. Our procedure has a complexity \(\mathcal{O}(n\log n + LT)\) where \(T\leq n\) is a problem-dependent constant and \(L\) is the number of zeros identified by the tests. Numerical experiments confirm that, for a prescribed computational budget, the proposed methodology leads to significant improvements of the solving precision.

The Korkine--Zolotareff (KZ) reduction, and its generalisations, are widely used lattice reduction strategies in communications and cryptography. The KZ constant and Schnorr's constant were defined by Schnorr in 1987. The KZ constant can be used to quantify some useful properties of KZ reduced matrices. Schnorr's constant can be used to characterize the output quality of his block $2k$-reduction and is used to define his semi block $2k$-reduction, which was also developed in 1987. Hermite's constant, which is a fundamental constant lattices, has many applications, such as bounding the length of the shortest nonzero lattice vector and the orthogonality defect of lattices. Rankin's constant was introduced by Rankin in 1953 as a generalization of Hermite's constant. It plays an important role in characterizing the output quality of block-Rankin reduction, proposed by Gama et al. in 2006. In this paper, we first develop a linear upper bound on Hermite's constant and then use it to develop an upper bound on the KZ constant. These upper bounds are sharper than those obtained recently by the authors, and the ratio of the new linear upper bound to the nonlinear upper bound, developed by Blichfeldt in 1929, on Hermite's constant is asymptotically 1.0047. Furthermore, we develop lower and upper bounds on Schnorr's constant. The improvement to the lower bound over the sharpest existing one developed by Gama et al. is around 1.7 times asymptotically, and the improvement to the upper bound over the sharpest existing one which was also developed by Gama et al. is around 4 times asymptotically. Finally, we develop lower and upper bounds on Rankin's constant. The improvements of the bounds over the sharpest existing ones, also developed by Gama et al., are exponential in the parameter defining the constant.

The Koopman operator is beneficial for analyzing nonlinear and stochastic dynamics; it is linear but infinite-dimensional, and it governs the evolution of observables. The extended dynamic mode decomposition (EDMD) is one of the famous methods in the Koopman operator approach. The EDMD employs a data set of snapshot pairs and a specific dictionary to evaluate an approximation for the Koopman operator, i.e., the Koopman matrix. In this study, we focus on stochastic differential equations, and a method to obtain the Koopman matrix is proposed. The proposed method does not need any data set, which employs the original system equations to evaluate some of the targeted elements of the Koopman matrix. The proposed method comprises combinatorics, an approximation of the resolvent, and extrapolations. Comparisons with the EDMD are performed for a noisy van der Pol system. The proposed method yields reasonable results even in cases wherein the EDMD exhibits a slow convergence behavior.

The fruits of science are relationships made comprehensible, often by way of approximation. While deep learning is an extremely powerful way to find relationships in data, its use in science has been hindered by the difficulty of understanding the learned relationships. The Information Bottleneck (IB) is an information theoretic framework for understanding a relationship between an input and an output in terms of a trade-off between the fidelity and complexity of approximations to the relationship. Here we show that a crucial modification -- distributing bottlenecks across multiple components of the input -- opens fundamentally new avenues for interpretable deep learning in science. The Distributed Information Bottleneck throttles the downstream complexity of interactions between the components of the input, deconstructing a relationship into meaningful approximations found through deep learning without requiring custom-made datasets or neural network architectures. Applied to a complex system, the approximations illuminate aspects of the system's nature by restricting -- and monitoring -- the information about different components incorporated into the approximation. We demonstrate the Distributed IB's explanatory utility in systems drawn from applied mathematics and condensed matter physics. In the former, we deconstruct a Boolean circuit into approximations that isolate the most informative subsets of input components without requiring exhaustive search. In the latter, we localize information about future plastic rearrangement in the static structure of a sheared glass, and find the information to be more or less diffuse depending on the system's preparation. By way of a principled scheme of approximations, the Distributed IB brings much-needed interpretability to deep learning and enables unprecedented analysis of information flow through a system.

The lossless compression of a single source $X^n$ was recently shown to be achievable with a notion of strong locality; any $X_i$ can be decoded from a {\emph{constant}} number of compressed bits, with a vanishing in $n$ probability of error. In contrast with the single source setup, we show that for two separately encoded sources $(X^n,Y^n)$, lossless compression and strong locality is generally not possible. More precisely, we show that for the class of "confusable" sources strong locality cannot be achieved whenever one of the sources is compressed below its entropy. In this case, irrespectively of $n$, the probability of error of decoding any $(X_i,Y_i)$ is lower bounded by $2^{-O(d_{\mathrm{loc}})}$, where $d_{\mathrm{loc}}$ denotes the number of compressed bits accessed by the local decoder. Conversely, if the source is not confusable, strong locality is possible even if one of the sources is compressed below its entropy. Results extend to any number of sources.

The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are exceptional and standard eigenvalue solvers, such as the QZ algorithm, tend to yield good accuracy despite the inevitable presence of roundoff error. Recently, Lotz and Noferini quantified this phenomenon by introducing the concept of $\delta$-weak eigenvalue condition numbers. In this work, we consider singular quadratic eigenvalue problems and two popular linearizations. Our results show that a correctly chosen linearization increases $\delta$-weak eigenvalue condition numbers only marginally, justifying the use of these linearizations in numerical solvers also in the singular case. We propose a very simple but often effective algorithm for computing well-conditioned eigenvalues of a singular quadratic eigenvalue problems by adding small random perturbations to the coefficients. We prove that the eigenvalue condition number is, with high probability, a reliable criterion for detecting and excluding spurious eigenvalues created from the singular part.

Holonomic functions play an essential role in Computer Algebra since they allow the application of many symbolic algorithms. Among all algorithmic attempts to find formulas for power series, the holonomic property remains the most important requirement to be satisfied by the function under consideration. The targeted functions mainly summarize that of meromorphic functions. However, expressions like $\tan(z)$, $z/(\exp(z)-1)$, $\sec(z)$, etc., particularly, reciprocals, quotients and compositions of holonomic functions, are generally not holonomic. Therefore their power series are inaccessible by the holonomic framework. From the mathematical dictionaries, one can observe that most of the known closed-form formulas of non-holonomic power series involve another sequence whose evaluation depends on some finite summations. In the case of $\tan(z)$ and $\sec(z)$ the corresponding sequences are the Bernoulli and Euler numbers, respectively. Thus providing a symbolic approach that yields complete representations when linear summations for power series coefficients of non-holonomic functions appear, might be seen as a step forward towards the representation of non-holonomic power series. By adapting the method of ansatz with undetermined coefficients, we build an algorithm that computes least-order quadratic differential equations with polynomial coefficients for a large class of non-holonomic functions. A differential equation resulting from this procedure is converted into a recurrence equation by applying the Cauchy product formula and rewriting powers into polynomials and derivatives into shifts. Finally, using enough initial values we are able to give normal form representations to characterize several non-holonomic power series and prove non-trivial identities. We discuss this algorithm and its implementation for Maple 2022.

We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'

北京阿比特科技有限公司